West Seneca Deer Task Force Agenda

September 21, 2021

The Deer Task Force meeting will be held in the Community Room at the Community Center & Library, 1300
Union Road at 6:00 PM.

¢ Welcome & New members introduce themselves
Approval of Meeting Minutes, July 20, 2021 (6:05-6:10)
e Members of the Task Force present on findings from the Town Board'’s resolutions
o Jonathan Brotka: WHEREAS, there is a significant lack of community knowledge about the
complexity of addressing deer in suburban environments. What information do we want to share
with the community about the complexity of these issues? Presentation and discussion (6:10-
6:35)
e Review of communications received (emails 6:35-6:40)
Open for the public to speak (6:40-7:00)
* Adjourn for a work session

Note that the next opportunity for public comment at a Deer Task Force meeting will be Tuesday, November 16.



Resident Concern

Brian Adams <badams@TWSNY.org>
Tue 8/3/2021 816 AM

To: Deer Task Force <WSDeerTaskForce@twsny.org>
Dear Members of the Deer Taskforce,

I had received a call the other day from Carol a resident of Summit Ave. regarding issues with deer in the
community. Her biggest issue was the deer are eating her shrubs and flowers. She also stated that while
driving down Center Road one had almost ran into the side of her car and its becoming a safety issue. |
told her | would pass along her information and concerns to the deer taskforce for review. If anyone
would like to reach out to her for more information her phone number is 716-984-2945,

Sincerely,

Brian J. Adams

Superintendent of Highways
Town of West Seneca

39 South Ave.
West Seneca, NY 14224
Phone: 716-674-4850



Re: Deer feeding from residence

Marlene Yahoo <lladychemist@yahoo.com>
Mon 8/2/2021 1:21 PM
To: Deer Task Force <WSDeerTaskForce@twsny.org>

Hi Cynnie:

Yes | am asking how to get residents to not feed deer which in itself, if it had never started, would
have deterred them from gathering in yards looking for food. On Norwood there have been many
deer crossing the street and there was almost a collision Saturday night here right near my home.
An elderly couple stopped in time too. Was quite upsetting to me considering the size of the doe
that came across. My husband and | have encountered them in the early hours of the workday just
standing in the street too. There are now 2-3 bucks, 6-7 doe and 5-6 fawn/yearlings.

| realize from the first task force meeting | was able to attend it was mentioned through the Cornell
person that it is a 5-6 year task. Right now Norwood has an issue with deer, specifically at the
Union road end near Alton. Not sure if this was ever brought to the task force but it is an issue. Can
a generic letter go out to residence of Norwood ?

Thanks for your help. Feel free to contact me at 983-5311.

Marlene Davis

On Aug 2, 2021, at 10:37 AM, Deer Task Force <WSDeerTaskForce@twsny.org> wrote:

Hello Marlene, Thank you for your email.

I am not sure what you are asking. Are you asking how to deter deer? Or are you
asking about how to ask someone to STOP feeding deer?

Cynnie
Facilitator,
West Seneca Deer Task Force

From: Marlene Yahoo <lladychemist@yahoo.com>
Sent: Monday, August 2, 2021 7:04 AM

To: Deer Task Force <WSDeerTaskForce @twsny.org>
Subject: Deer feeding from residence

GoodSay:

Can you inform me as to whether there is any action that can be taken for feeding deer
from a residence?

Thank you

Marlene Davis



Re: Deer feeding from residence

Deer Task Force <WSDeerTaskForce@twsny.org>
Mon 8/2/2021 4:53 PM
To: Marlene Yahoo <lladychemist@yahoo.com>

Thank you for asking about this. We are discussing an education program around these very
issues.

As you know, the Task Force will take some time, but | will forward this to Gary Dickson.

Cynnie

From: Marlene Yahoo <lladychemist@yahoo.com>
Sent: Monday, August 2, 2021 1:21 PM

To: Deer Task Force <WSDeerTaskForce @twsny.org>
Subject: Re: Deer feeding from residence

Hi Cynnie:

Yes | am asking how to get residents to not feed deer which in itself, if it had never started, would
have deterred them from gathering in yards looking for food. On Norwood there have been many
deer crossing the street and there was almost a collision Saturday night here right near my home.
An elderly couple stopped in time too. Was quite upsetting to me considering the size of the doe
that came across. My husband and | have encountered them in the early hours of the workday just
standing in the street too. There are now 2-3 bucks, 6-7 doe and 5-6 fawn/yearlings.

I realize from the first task force meeting | was able to attend it was mentioned through the Cornell
person that it is a 5-6 year task. Right now Norwood has an issue with deer, specifically at the
Union road end near Alton. Not sure if this was ever brought to the task force but it is an issue. Can
a generic letter go out to residence of Norwood ?

Thanks for your help. Feel free to contact me at 983-5311.

Marlene Davis

On Aug 2, 2021, at 10:37 AM, Deer Task Force <WSDeerTaskForce@twsny.org> wrote:

Hello Marlene, Thank you for your email.

I am not sure what you are asking. Are you asking how to deter deer? Or are you
asking about how to ask someone to STOP feeding deer?

Cynnie
Facilitator,
West Seneca Deer Task Force

From: Marlene Yahoo <lladychemist@yahoo.com>
Sent: Monday, August 2, 2021 7:04 AM



To: Deer Task Force <WSDeerTaskForce @twsny.org>
Subject: Deer feeding from residence

GoodSay:

Can you inform me as to whether there is any action that can be taken for feeding deer
from a residence?

Thank you

Marlene Davis



Biology of food, water, predator / prey relations, human development and
encroachment on wetlands, breeding rates, family size.

James Burnette <jhburnette@hotmail.com>
Mon 7/19/2021 8:03 PM
To: Deer Task Force <WSDeerTaskForce@twsny.org>

@ 7 attachments (6 MB)

Competing Species -- Non-linear DE's pg. 1 of 7Zjpg; Competing Species -~ Non-linear DE's pg. 2 of 7.jpg; Competing
Species -- Non-linear DE's pg. 3 of 7.,jpg; Competing Species -- Non-linear DE's pg. 4 of 7.jpg; Competing Species -~
Non-linear DE's pg. 5 of 7.jpg; Competing Species -- Non-linear DE's pg. 6 of 7.jpg; Competing Species -- Non-linear
DE's pg. 7 of 7.jpg;

West Seneca Deer Task Force
bece: Professor Robin Foster, Canisius College

bee: Saundra Mercado

Mon, 19 July, 2021

Hello:

I would like to submit this e-mail for tomorrow's public meeting with the West Seneca Deer Task
Force.

The initial 18 May meeting went smoothly, except for a snarky comment muttered by a fellow in
the audience. Apparently, he didn't agree with the findings that an abrupt reduction in deer
population leads to larger subsequent number of offspring; a statement made by Saundra
Mercado. (Deer contraception and family planning will be brought up by someone else, or at a
later meeting. | suspect much of the concern here is with lethal vs. non-lethal population control
methods.)

My concern today is the quality of arguments and references, and with the decorum of the
audience. "Bull sh*t"is not a proper rebuttal. It may be the opening line of one, but it does not
constitute a good argument. | therefore wish to attach pages (best viewed with Windows
Picture & FAX Viewer ?) from Boyce & DiPrima, Elementary Differential Equations & Boundry
Value Problems, 4th ed, Wiley, 1986. Though the emphasis is on math for scientists and
engineers, the explanations in the Predator - Prey relations section starting on p.493 are still
relevant, and the references cited by the authors may be of value, as they are not limited to
analysis by pointy headed academics in ivory towers, but include data from the Hudson Bay
Company of Canada (these guys were purely profit oriented, and no one can accuse their data
of having a tree hugger bias).

Though the math may not be of interest to anyone on the Task Force other than the Professor, it
serves a purpose once enough data is collected. (I'm certain other audience members will
speak on the population data collected from neighboring towns.) Even if you skip over the
math, the salient features of the biology are relevant to our discussions today, qualitatively, if not
quantitatively. Thatis, we'll get the general idea of population dynamics, and what happens
when excess pressure from the rural ag community demands that the NYS DEC allow open



season on our friends, the coyote and wild cats (possibly the only real solutions to the "deer
problem").

The relation to food and brood size is not mentioned in the text. This may require other census
sources as well as agricultural and NOAA weather data for specific years. | will start asking
around, beginning with NYS DEC.

Yours truly,

James H. Burnette
64 St.Johns Place
Lackawanna, NY 14218

P.S. How did the task force verify the actual deer population and extent of garden / agricultural
damage and automobile collisions, as well as health / disease state of killed deer ? We cannot
rely on hearsay, and the method of data collection must also be discussed for the public to
understand -- otherwise, we won't know if we're making any progress with simple fixes such as
levying fines against residents who feed wildlife, either intentionally or by careless overflow of
garbage totes. This would be a very easy first step, and | look forward to the metrics in a few
months.

JHB
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and decay will be observed, and how such possibilities depend on the initial state
of the two cultures.

The critical points of the system (2) are the solutions of the nonlinear
alpebraic equations

19. Consider the equations for two competing species derived in Section 9.1:
; dijdt = x(¢g —oyx —ayy),  dy/di =y(e; — gy~ ayx).

Suppose that €, /0, < ¢,/a, and ¢,/0, < € /a;.
(a) Find the critical point (X, ) for which both species can coexist.
(b) By making the change of variables x = X + w, y = Y + v transform the s
of equations to onc with a critical point at u =0, v = 0. Observe that the sy
almost linear,
(c) Classify the critical point as to type and stability.

20. Carry out the calculations of Problem 19 for the case ¢, /0, > ¢,/a; and €,/
€/a.

¥(1—-x=-y)=0,

»(0.5 - 0.75x - 0.25y)} = 0.

There are four critical points, namely, (0,0), (1,0), (0,2), and (0.5,0.5). The

1 (2) is almost linear in the neighborhood of each critical point, so we

igate the trajectories near each of these points by considering the corre- i

onding linear system, ;

x =0, y = 0. This corresponds to a state in which both bacteria die as a
wult of their competition. From Eq. (3) the corresponding linear system is

)= sslG) o |

e eigenvalues and eigenvectors are

@

9.4 Competing Species and
Predator—-Prey Problems

In this section we consider two proble
predator-prey.

in ecology: competing spe¢

B - M 1). - (z)=(0)'
B :n.'\ ( VG | . In Section 9.1 we showed that a model for the coi n=1 ¢ (0 ! n=03. & 1 ®
" tion between two species with population densities x and y leads { i« the general solution of the system (5) is . ‘
differential equations i G !
5)-<lg) ) 0
y 1 0 2 1 .

- oripin is an unstable improper node of both the linear system (5) and the
shinenr system (3). In the neighborhood of the origin all the trajectories are |
ent 1o the y axis except for one pair of trajectories that lies along the x axis. i
we the origin is an unstable critical point, this equilibrium solution will not '
wt in practice.

v = 1, p = 0. This corresponds to a state in which bacteria x survives the
wiition but bacteria y does not. To examine this critical pointlet x = 1 + u,
6 . Substituting for x and y in Egs. (2) or (3) and simplifying, we obtain

where the parameters ), 0,,.. ., &, are positive. As we saw then, we can i
these equations by dividing the phase plane into regions according to the
dx/dt and dy/dt and then drawing typical trajectories. Let us now s
can use the theory of almost linear systems to obtain a more precise un
ing of what happens.

We start by considering the following specific example:

dx/di = x(1 = x — y), _ti(u)=(—l -1 )(u)_(u:+ul, ) ®)
dv/dr = p(0.5 — 0.75x — 0.25y). di\p 0 -025/\v 0.75up + 0.2507
or cwresponding linear system is
| . A i diu ( -1 -1 \(u)
dfxy _[1 0 ) ‘\) R i ( ,,) 0 -<0.25) v/ ©
deiy o 05y 075y 1 0257
’ ‘ cenvadues and clgenvecton are
For convenicnce we think of v and v as the population desities of 1w O -
bacterin competing with vach other for the sanw sipply of Tood, We ask ry bk e ( P ) PR R E TR Al ( ‘)- (10)

there are equalibrinm states that mighi hepeached, or whether o petiondiy
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and its general solution is

wy (1Y ., 4) /s
(0)—c1(0)e +C:(_3 e .

The point (1, 0) is an asymptotically stable improper node of the linear system (4
and hence of the nonlinear systems (8) and (3) as well. If the initial values of |
and y are sufficiently close to (1,0), then the interaction process will leal
ultimately to that state.

The behavior of the trajectories near the point (1,0) can be seen from
(11). If ¢, = 0, then there is one pair of trajectories that approaches the critie
point along the x axis. All other trajectories approach (1,0) tangent to the |
(with slope ~ 1) that is determined by the eigenvector £@. ’

x =0, y = 2. In this case bacteria y survives but bacteria x does not.
analysis is similar to that for the point (1,0). If welet x = u, y = 2 + v, thes

obtain
dfu =11 0 u)__(uz+uv )
dr\y =15 =05/\v | 0.75uv + 0.250%

Since the eigenvalues are of opposite sign, the critical point (0.5,0.5) is a saddle
point, and hence is unstable. One pair of trajectories approaches the critical point
#s £ — oo; the others recede from it. The entering trajectories have the slope
(/57 — 3)/8 = 0.57 determined from the eigenvector associated with the negative
cigenvalue.

A diagram of what the trajectories look like in the neighborhood of each
critical point is shown in Figure 9.25a. With a little additional work it is possible
to extend the local pictures and obtain a global picture of the trajectories in the
phase plane. First, we are only interested in x and y positive, Since trajectories
vannot cross other trajectories, and since the x and y axes are trajectories, it
follows that a trajectory that starts in the first quadrant must stay in the first
yuadrant, and a trajectory that starts in any other quadrant cannot enter the first
(uadrant. Second, we accept without proof two facts that follow from more
advanced theory: (i) the system (2) does not have any periodic solutions, that is,
irijectories that are closed curves; and (i) a trajectory that is not a closed curve
wust either enter a critical point or recede to infinity as 7 — oo, For x and y large
the nonlinear terms —(x? + xy) and ~ ${(»® + 3xy) in the first and second of
Fys. (2), respectively, outweigh the linear terms. Since they are negative, dx/dt
i dy/dt are negative for x and y large. Thus for x and y large the direction of
nolion on every trajectory is inward. The trajectories cannot escape to infinity!
Fventually they must head toward one or the other of the two stable nodes. The
whematic sketch shown in Figure 9.25b is not an unreasonable representation® of

hat must be happening in the first quadrant. I the initial values of x and y are
in region 1 of Figure 9.255, then x wins the competition; if the initial values are
in region I, then y wins. “Peaceful coexistence” is not possible unless the initial
point lies exactly on the dividing trajectory (separatrix). Of particular interest
would be the determination of the dividing trajectories that enter the saddle point
{61.5,0.5) which separate regions I and II.

Now let us return to the general system (1). Recall from Section 9.1 that four
vanes must be considered depending on the relative orientation of the lines

.

The eigenvalues and eigenvectors of the corresponding linear system are
1 _{0 :
n=-1 &= (1 -0 g@=(7), (

and its general solution is

uy 1 -t 0) ~1/2
(D)—cl(:;)e +cz(1 [4 -

The critical point (0, 2) is an asymptotically stable improper node. All (raje
approach the critical point along the y axis except for one pair that approy
along the line with sltope 3.

x = 0.5, y = 0.5. This critical point corresponds to a mixed cquilibrit
or coexistence; a standoff, so to speak, in the competition between thi' ¥
bacteria cultures. To examine the nature of this critical point we fet v = 0.5 4
y = 0.5 + v. Substituting for x and y in Eqs. (2) or (3). we obtain

dfu - =05 -0.5 )(N) m(ul + e )
dry -0.375  -0.25/\» 0.75u0 -+ 0,250

-0 x—ay=0 and ¢, — 0,y — a,x =0, (17)

»hown in Figure 9.26. Let (X, Y) denote any critical point in any one of the
futie cases. To study the system (1) in the neighborhood of this critical point we
Il

v X b y=Y+u, (18)
The eigeavalues and cigenveetors of the corresponding, linear system e

b edodied trigeetonies da spprar e go, for cvnnple, b (8,00 10 (1,03 actmally correspond o
g tonies theowgh pacthonlai Tdtial poing Ay o ghey appioach the stable nodve (1,0} as

.
N R NG VAT L L PN |

co they appoach the unstabls made 103
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FIGURE 9.26  The various cases for the competing species system (1).

{0, 2) 1 /

\!

‘\\\\ wd substitute in Egs. (1):

Wy Ve

‘\\\ - %(X%-u):()(—b-u)[c]—ol(X+u)—-a1(Y+ V)],
\\\\ \ // i - ! (19)
WAL Lo ol 4

¢I[t(Y+U) =(Y+v)[eg = 0¥+ v) —ay(X + u)].

Biwee dX/dt = dY /dr = 0, we have

2N
T, [ d
Vs \\\\\i\\ % = (X +w)(e, - X~ oY) — ou — ay], (20a)
0,0l .o o
@ (Mo, - ey —aX) - o - “1”]~ (20b)
o

The apht side of Eq. (20 o ihe Jorme Ny = o, X = @YY+ (4 ( o+

o b yae The canstind e 15 2ero sinee either ¥ - 0 or G o X Y
Simtlacty, dthe vight side of Ego 200 reduces o the Torm

Vb O e e w10 s vl tha Fas 040 are atimond Bneny, so

FIGURE 925 (a) Trujeciories in the egghbochood of vach coineal point of the sysieni
(0} Overall patitei i of ajectonies Jor the sysiem ()
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we consider the corresponding linear system Let us relate this result to Figures 9.26¢ and 9.264. In Figure 9.26¢ we have

= - ( — - - (v €,
dufdt = [(e, = 0, X - a¥) ~ 0, X]u ~ &, X, @1 ST O am>eo ad 2>t oo e >e0,.  (26)
dojdt = —e,Yu + (€3 — 0,Y ~ a, X) — 0,Y ] 0.
These inequalities coupled with the condition that X and ¥ given by Eqgs. (22) be
positive yield the inequality 0,0, < e,a,. Hence in this case the mixed state is an

unstable saddle point. Corresponding to Figure 9.26d, we have

Equations (21), along with Theorem 9.2 of Section 9.3, can be used to determis
the type and stability of any critical point ( X, ) of the original system (1). Th
linear equations are referred to as the linearized equations for small perturbation
in the neighborhood of the critical point (X, Y). The process of deriving them

) L. €2 1 € €y
called linearization. > = or 60> qa; and = > == or 0, > 6a,.  (27)
&2 o9 Lot o - :

We use Egs. (21) to determine whether the modcl given by the system (1) ca
ever lead to coexistence for the two species x and y, and if so, under w
conditions on the parameters €, 0y, ..., a,. The four possible situations are sho
in Figure 9.26; coexistence is possible only in cases (c) and (d). The values
X+ 0 and Y # 0 are obtained by solving the system of simultaneous lin
algebraic equations (17). We readily obtain

ow, the condition X and Y positive yields 6,0, > a,a,. Hence this mixed state
asymptotically stable. For this case we can also show that the critical points
1.0), (€,/0,,0) and (0, ¢,/0,) are unstable. Thus no matter what the initial values
ol v # 0 and y+ 0 are, the two species approach an equilibrium state of
toexistence given by Egs. (22).

Equations (1) provide the biological interpretation of the result that 6,0, >
«, leads to coexistence and ¢a, > ¢,0, does not allow coexistence. The a’s are
# measure of the inhibitory effect the growth of each species has on its own
owth rate, while the «’s are a measure of the inhibiting effect the growth of each
gucies has on the other species (interaction). Thus when 0,0, > a4, interaction
“small” and the species can coexist; when a,&, > 0,0, interaction (competi-
) is “large” and the species cannot coexist—one must die out.

€,0; — €0 . €0~ €0,

) Y= .
010 — &y, 0,07 — &,

X =

Moreover, since € — 0, X — a,Y =0 and ¢, ~ 0,Y - a, X = 0. Eqs. 21) i
mediately reduce to

duy [-o X -—aX\fu

di\o] \-ayy —o¥]|luf

The eigenvalues of the system (23) are found from the equation

o~

FREDATOR-PREY.; As a second example we consider the classical predator-prey
fiblem. We study an ecological situation involving two species, one of which
nevs on the other (does not compete with it for food but actually preys on it}
shile the other Nves on a different source of food. An emmple is foxes and
sbhits in a closed forest; the foxes prey on the rabbits, the rabbits live on the
‘tation in the forest, Other examples are bass in a lake as predators and redear
immtish) as prey, and lady bugs as predators and aphids (insects that suck the
iiee of plants) as prey. Let H(t) and P(!) be the populanons of prey and
datar, respectively, at time 7. R ey, Toopesd. g
We build as simple a model of the interaction as possible. We make the
ullowing assumptions:

r24 (6, X + ,¥)r +{0,0, XY — 0,0, XY) = 0.

Thus

{0 X+ oY)+ \/(a,X +0,7) = 4(0,0, — aya,) XY

2 &

If 6,6, — aja, < 0 then the radicand of Eq. (25} is positive and greater (h
(a1 X + 0,Y )2 Thus the eigenvalues are real and of opposite sign. Consequent
the critical point (X,Y) is an unstable saddle point, and coexistence is
possible. This is case in the specific example given by Fgs. (2% there o)

=10,=1% a,=1and 0,0, - @y, = — L.

On the other hand, if a,0, — e, > 0, then the radicand of By, (25) s )
than (6, X + 6,Y)% Thus the cigenvalues are real, negative, and unequal,
complex with negative read parl. A simple analysis of the dicand of Fy. (4
shows that the cigenvalues ciimot be comypdex gee Problem 6y Thus the et
pomnt i ap asymplotically stable guproper node. Coexistence n possible

tn the absenee of the plcd.nm the prcv grows without bound; thus dH /dt =
all, o - O Tor P o= ), P 4

In e absence of lh« |m\ llu pluhlm dics oul, thus dP/dt = —~¢P, ¢ > 0,
b 1A, vy

Phe invrease in the numhu ol preditors v wholly dependent on the Tood

[T sopply (the prey) amd the prey e consnmed sl pae proporiioml 16 e
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number of encounters between predators and prey. Thus, for example, if ¢
number of prey is doubled the number of encounters is doubled. Encounte;
decrease the number of prey and increase the number of predators. A fix
proportion of prey is killed in each encounter, and the rate of populati
growth of the predator is enhanced by a factor proportional to the amount
prey consumed.

To study the critical point (¢/y, a/a) we let

H=(c/y) +u, P=(a/a)+v. ;-
Substituting for H and P in Eqs. (28), we obtain

i(u)=( 4] —ac/y\fu - auv
dr\o ya/a 0 ) v)+( yuv)"

the system (31) is almost lincar, and the corresponding linear system is

Li_ uy [0
dt h ya/e

the exgenvajpes of the system (32) are r = ;tu/t;; 50 Lhcv C_Aj‘_pomt 1s a

table) center of the linear system. To find the trajectones of the system’ (33 we
n divide the second equation by the first: Vg

,"/,

As a consequence, we have tbe equauons
pivy

dHYdi = aH ~ aHP -‘H(u —aP), /

aore o o
11)’1/:1(=—CP+7HP (P( c+~/H)*

The constants g, ¢, a, and y are positive; a and ¢ are the growth rate of the pr
and the death rate of the predator rcspecuvely and a and y arc measures of {
cﬁect of the interaction between the two species. Equations (2B) are known as
{ Lotkd-Voherra ‘equations, They were developed in papers by Lotka® in 1925 ar
erra® in 1926. A[though these equations are simple, they do characteriz
wide class of problems. Ways of making them more realistic are discussed at |
__end of this section and in the problems.

What happens for given initial values of P >0 and H > (0?7 Will
predators eat all of their prey and in turn die out, will the predators die
because of a too low level of prey and then the prey grow without bound, wil
equilibrium state be reached or will a cyclic fluctuation of prey and predf

occur? iy
N The cmlcaj pomts of Eqs. (28) are the solutions of

dy _ dvsdt _ ; (ya/a)/u

du du/dl ‘7'(ac/y):u ! (33)

(va/a)udu +(ac/y)vdo = 0. me obode (34)

‘onsequently,

4

{ya/a)u’ +(¢X€/¥)v =k, (35) f'

vhere & is an arbitrary poninegative constant of mtcgratlon Thus lhe tra)ectones
we etlipses; a few of which are sketched in Figure 9.27.

While the critical point is a stable center of the linear system (32), we need to
css its character for the almost linear system (31). Here, as we know, our ]
heory for almost linear systems fails. The effect of the nonlinear terms may b to

H{a—-a«P)=0, P{— c+yH)=0

These snluuons areiH = 0, P = Qland H = ¢/y, P = a/a.ltis casy to show
the critical point (0,0) is 2 saddle point, and hence unstable. Entrance to
saddle point is along the line H = 0; all other trajectories recede from the ¢
point.

SAlfred J. Lotka (1880-1949), an American biophysicist, was born in what is now the Ukra
was educated mainly in Europe. He is rememberc fty for his formulation of the Lotka- Vil
equations. He was also the author, in 1924, of the finst hook on mathenutical bivdogy! it
available as Elements of Mathematicol Ihuluu {(New York: Dover, 1930),

$Vito Vollurd (166() 1940), a distinguished Halian matheniadician, el professoripe ol Py,
and Rome. He is partic y famows for his wotk i integral egui Pt
Tndeed, ane of the nagor el of intepsid cogpatiorc b imed for b, Gee Problem 14 o8
Dix theory of atermctiog specices was motivated by it collected Dy a Friomt, D' Ancona, con
fish catches in dre Adeistic Seac A vlition of B 1900 pay
Chapiian, Animied Fosdogy with Speciol federence o et
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gimeas b alpho fis oy
change the center into a'stapjle“gpim) poml or into an unsgglﬁ;}g spira
may remain as a stable center. F |

can actually solve the nonlinear cquations (28) and determine what happen
Dividing the second of Egs. (28) by the first equation, we obtain ,

- The size of the predator and prey populations varies sinusoidally with period

o

- The predator and prey populations are out of phase by one-quarter of a cycle.
The prey leads and the predator lags as one nught expect. This is discussed in
Problem 9.~

. The amplitudes of the oscillations are Kc/y for the prey and avc K/ava for
the predator and hence depend on the initial conditions as well as thes
parameters of the problem.

. The average numbers of predators and prey over one complete cycle are ¢/y
and a/a, respectively. These are the same as the equilibrium populations (see

-

dP P(=c+yH)
dH = "H{a-aP)

Upon separating the variables in Eq. (36), we have

a-— -+ yH

bio s Problem 10).
5 7 dH, E
) o [
from which it follows that : e Cyclic variations of predator and prey as predicted by Eqs. (28) have been
R alnP - aP = —cln H + yH +In¢, ( vbserved in nature. One striking example is described by Odum (pp. 191-192):

hased on the records of the Hudson Bay Company of Canada, the abundance of
lynx and $nowshoe hare as indicated by the number of pelts turned in over the
period 1845-1935 shows a distinct periodic variation with a period of nine to ten
cars. The peaks of abundance are followed by very rapid declines, and the pcaks”,;
1

where C is a constant of integration. We cannot solve Eq. (37) explicitly for /
terms of H or for H in terms of P, but it can be shown that the graph of i
equation for a fixed value of C is a closed curve (not an ellipse, of cou
enclosing the eritical point (c/y, a/a).” Thus the predaior and prey have a ¢y
variation about the critical point and the critical pou;t is also a center uf
nonlinear system. . fery

We can analyze this cyclic variation in more detail when the devmnon i
the point (¢/y, a/a) is small; that is, when it'is permxssnb]c to linearize
perturbation equations (31) for # and v. As we have noted, the tra]ect.one? ure
family of ellipses given by Eq. (35). We can also verify, cither by solving Eqgs. {
or by direct substitution, that the solution of Eqs. (32) is

u(t) = %KCOS(\/II{-{-(#), o(1) = %EKsin(\/aTrnqu),

o abundance of the lynx and hare are out of phase, with that of the hare
preceding that of the lynx by a year or more. [

The Volterra-Lotka model of the predator—prey problem has revealed a cyclic
viriation that was perhaps intuitively expected. On the other hand, the use of the
Volierra-Lotka model in other situations can lead to conclusions that are not
imtuitively obvious. An example revealing a possible danger in using insecticides is
given in Problem 12.

One criticism of the Volterra-Lotka predator—prey model is that in the ab-
sence of the predator the prey will grow without bound. This can be corrected by
allowing for the natural inhibiting effect that an increasing population has on the
prowth rate of the population; for example, by modifying the first of Egs. (28) so
that when P = 0 it reduces to a logistic equation for H (see Problem 13). The
molels of two competing species and predator-prey discussed here can be
ihdified to allow for the effect of time delays; probabilistic and statistical effects
¢ also be included. Finally, we mention that there are discrere analogs of each _1
ot the problems we have discussed corresponding to species that breed only at |
weriain times. The mathematics of the discrete problems are often mterésung and

wie of the results are unexpected. These generalizations are discussed in the
references given at the end of this chapter as well as in other books on
mathematical biology and ceolopy.

We conclude with a final warning, Using only elementary phase plane theory
B one and two noslinear ordiseey dillerential equations, we have been able to
Hlnstrate severad of the fomdamsmisl principles of simple biological systems. But
pire shoukd not be mistedepplupy s non s simple,

where the constants K and ¢ are determined by the initial conditions. ‘Thus

+ chos(ff?l + v,b),

+ g\/?Ksin(ff\//;c'ﬁ:t + ).
i aVa s

These equations are valid for the elliptical (rajectories dlose o the ¢
point (c/7v, a/a). We can use them (o draw several conclusions about the ¢
variation of the predator and prey on such {rijectorivs,

TWaltersa pave aclever elementary geomstne proof of this readt Shorter dat mathematoslt
advaneesly provds hive abso been diacoveted

2n/ vac . This period of oscillation is independent of the initial conditions. /} o
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PROBLEMS

Each of Problems 1 through 5 can be interpreted as describing the interaction of
species with population densities x and y. In each of these problems

(a) Find the critical poiats.

{b) For cach critical point find the corresponding lincar system. Find the cigenvalues
the linear system, and determine the type and stability of each critical point.

(c) Sketch the trajectories in the neighborhood of each critical point. Dctermine
limiting behavior of x and y as 1 — o0.

1. dx/dt = x(1 — x + 0.5p)
dy/dt = p(2.5 — 1.5y + 0.25x)

3, dx/dt = x(1 — 0.5x — 0.5y)
dy/dt = p(—025 + 0.5x)

5. dx/dt = x(1.125 — x — 0.5»)
dy/dt = y(—1 + x)

6. Show that

2. dx/dt = x(1.5 - x = 0.5y}
dy/dt = y(2 — y — 0.75x)

4 dx/dt = x(1.5 — x — 0.5y}
dy/dt = y(2 ~ 05y ~ 1.5x)

16

(0, X + 6,¥) — &(0,0, — oy, ) XV = (0, X ~ 0, ¥}’ + daqya, XY.

Hence conclude that the eigenvalues given by Eq. (25) can never be complex.

7. Two species of fish that compete with each other for food, but do not prey on
other, are bluegill and redear. Suppose that a pond is stocked with bluegill and
and let x and y be the populations of bluegill and redear, respectively, at ti
Suppose [urther that the competition is modeled by the equations

dx/dt = x{€ — a,x — ayy),
dy/dt = y(&; — myy — ayx).

(a) If ¢;/a; > ¢ /a, and ¢,/a, > € /oy, show that the only equilibrium popul)
in the pond are no fish, no redear, or no bluegill. What will happen?
M) If ¢, /0, > €,/a; and ¢ /& > €,/0,, show that the only equilibrium populiy
in the pond are no fish, no redear, or no bluegill. What will happen?

. Consider the compelition between bluegill and redcar mentioned in Prol
Supposc that ¢/, > ¢ /o, and €, /@, > ¢,/a;, 50, as shown in the texl, therd
stable equilibrium point at which both species can coexist. It is convenient to 1é
the equations of Problem 7 in terms of the carrying capacitics of the pond for b
(B = ¢ /0,) in the absence of redear and for redear (R = ¢,/n.) in the abwen
bluegill.

(a) Show that the eguations of Problem 7 tuke the form

dx X |7 ) vy ( 1 ) v
dr “‘"‘(' AR Rl CE A A H‘)'

0

where yy = /o and gy o= o0 Determine the vousisdence cquilibom
(XY yin e of HO R,y anmd oy,
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(b) Now suppose that a fisherman fishes only for blucgill with the effect that B is
reduced. What effect does this have on the equilibrium populations? Is it possible, by
fishing, to reduce the population of bluegill to such a level that they will die out?

In this problem we examine the phase difference between the cyclic variations of the
predator and prey populations as given by Egs. (39) of the text. Suppose we assume
that K'> 0 and that T is measured from the time that the prey population (H) is a
maximum; then ¢ = 0. Show that the predator population () is a maximum at
1 =a/Wac = T/4, where T is the period of the oscillation. When is the prey
population increasing most rapidly, decreasing most rapidly, a minimum? Answer the
same questions for the predator population. Draw a typical eiliptic trajectory enclos-
ing the point (¢/v, ¢/a), and mark these points on it.

The average sizes of the prey and predator populations are defined as

g LT 5 _ 1 paer .
1~TL o(tydt, F 'rf,. P(r)dt,

R

respectively, where 7 is the perod of a full cycle and A is any nounegative constant.
Show for trajectories near the critical point that B = ¢/y, P = a/a.

Suppose that the predator-prey equations (28) of the text govern foxes () and
1abbits (/) in a forest. A trapping company is engaging in trapping foxes and rabbits
for their peits. Explain why it is reasonable for the company to conduct its operation
m such a way as to move the population of each specics closer to the center
{¢/v,a/a). When is it best to trap foxes? Rabbits? Rabbits and foxes? Neither?
Hint: See Problem 9. A mathematical argument is not required.

! Suppose that an insect population ( H) is controlied by a natural predator population

) according to the model (28), so that there are small cyclic variations of the
prpulations about the critical point (c/y,a/a). Show that it is self-defeating to
employ an insecticide if the insecticidc also kills the predator. Assume that the
mecticide kills both prey and predator at rates proportional to cach population,
wepeetively. To ban insecticides on the basis of this very simple model would certainly
tw ill-advised. On the other hand, it is also rash to ignore the possible genuine
cvistence of a phenomenon suggested by a simple model.
V. was mentioned in the text, onc improvement in the predator-prey model is to
wadify the cquation for the prey so that it has the form of a logistic cquation in the
ience of the predator. Thus in place of Egs. (28) we consider the model system
dii/dt = H(a — oH — aP),
dP/dt = P{~c + yH),
where a, o, &, ¢, and y are positive constants. Determine all critical points and
sy their nature and stability. Assume that a/6 > ¢/y. What happeas for initial
data 1 £ 0, P#0?

9.5 Liapunov’s Second Method

I Seetion 9.3 we showed how the stability of a critical point of an almost
1 ystenn can nsuilly by determined from astady of the corresponding, linear

tenn. However, no conelusion van be diovie when the critieal point is o center




Deer are overtaking my backyard. HELP!

MD Jones <DMJones_5@hotmail.com>
Mon 8/16/2021 1:21 PM
To: Deer Task Force <WSDeerTaskForce@twsny.org>

Greetings Deer Taskforce.

I am, once again, soliciting your help for deer control in the areas behind Clinton Street
Elementary, St Jude Terrace, Tim Tam Terrace and Organ Crescent. My home is on Organ
Crescent.

The deer travel in packs ranging from 2 to 8 or 9. Recently on one occasion there were 12! They
have made a complete joke of my few plants and sleeping all over my yard. I have a small

tall double fenced garden where sunflowers and pumpkins are growing. While food is abundant
for them in parks and other green spaces, they are leaning over my fencing, bending it terribly
and aggressively trying to get inside. I am treating for deer ticks but they are in the yard multiple
times nightly that I don't trust the efficacy of my deer tick prevention regime. I work often late
into the night

and many nights find them obstructing traffic on Organ Crescent and Bosse Lane often barely
moving out of the way of my car. They've stood in my driveway just looking at me, at times
where I needed to get out of my car and lunge toward them just to get them out of the way.
There were a couple of times this summer where they can right up on my deck next to my sliding
glass door just to check the space out. There

are no plants on my deck for them. They did go up onto the deck of my next door neighbor and
are all the lettuce he had growing. Deer on the deck of anyone's home is a mere reflection of
their comfort being

all over everyone's property. It's too much!

This has worsened in abundance over the past couple of years. I am tired of them to no end. I
am hoping you can help us with the terrible nuisance this has become. This neighborhood needs
some help and support!

Please don't tell me all the reasons as to why they were all over in high numbers. Everyone
knows all that. Everyone is practicing mitigating measures. The deer are obnoxious and there
are entirely too many of them.

Help!

Thank you kindly,

Donna, Michael Jones

22 Organ Crescent



Walnut Off of Main - Deer Poop all over my lawn - People feeding deer!

Rick Deren <dric77@gmail.com>
Mon 8/23/2021 2:13 PM

To: Deer Task Force <WSDeerTaskForce@twsny.org>
Deer Task Force,

I moved into West Seneca last year from Lackawanna. We had a lot of deer there and never had
problems. On my property | can at 5 or 5 deer an evening. They are nice and good for my 2 yr and
6 yr kids to see. My main issue is that they poop all over my lawn. [ pickup pounds on a daily poop
basis. The deer are not afraid and come up to you. People in my neighborhood feed the deer
regularly, which | don't think is allowed. The door poor is a lot and usually liquidity. My main
concern is the insects they carry, they lay all over my lawn.

Please direct me if there is anything. West Seneca has a program to help with this problem.

Thanks,

Rick Deren

38 Walnut Road

West Seneca, NY 14224
(716} 308-3869 (c)



