

Multi-Family Development

299 Leydecker Road Town of West Seneca, NY

Downstream Sewer Capacity Analysis Report

Project Description

This project proposes the development of an 8.6 acre site located on the east side of Leydecker Road in the Town of West Seneca. Construction will consist of five multifamily buildings and twelve duplex buildings. The site will also include the construction of on-site utility, lighting and landscaping improvements. The site is currently partially developed with a commercial building and parking lot.

Node 1 – Creek 24in (24"):

Existing Peak Flow measured (wet weather event)	=	4.052 cfs (2.619 mgd)*
Proposed Multi-Family Peak Flow	=	0.112 cfs **
Proposed Peak Flow	=	4.164 cfs
Existing Peak Flow measured (overall)	=	4.576 cfs (2.958 mgd)*
Proposed Multi-Family Peak Flow	=	0.112 cfs **
Proposed Peak Flow		4.688 cfs

Capacity of existing 24" RCP pipe @ 0.18% = 10.389 cfs

<u>Conclusion:</u> Monitored flows the day following the 0.53" rainfall event <u>did not</u> exceed the capacity of the existing pipe 24" sewer. During the monitoring period, two times the flow depth exceeded the pipe diameter at Node 1, but at no time did the flow at any point slow or stall which would have caused a backup or flooding at the manhole. I/I mitigation shall be required for the contribution proposed for this project.

Node 2 – West Seneca Psych Center (14"):

Existing Peak Flow measured (wet weather event)	=	1.269 cfs (0.820 mgd)*
Proposed Multi-Family Peak Flow	=	0.112 cfs **
Proposed Peak Flow	=	1.381 cfs
Existing Peak Flow measured (overall)	=	1.386 cfs (0.896 mgd)*
Proposed Multi-Family Peak Flow	=	0.112 cfs **
Proposed Peak Flow	=	1.498 cfs

Capacity of existing 14" RCP pipe @ 1.0% = 5.817 cfs

<u>Conclusion</u>: The proposed peak flow is less than the capacity of the 8" pipe, therefore there is sufficient capacity. At no time did the flow depth exceed the pipe diameter at Node 2 of the downstream monitoring points during the rain events monitored.

Notes:

Pipe slopes, sizes and materials provided by Clark Patterson Lee for the Town of West Seneca

- * Converted from measurements in TECSmith report dated 1/15/19 & 5/15/19
- ** See Sanitary Sewage Demand Calculations

Node 3 – Leydecker PS (10"):

Existing Peak Flow measured (wet weather event) = 0.911 cfs (0.589 mgd)*

Proposed Multi-Family Peak Flow = 0.112 cfs **

Proposed Peak Flow = 1.023 cfs

Existing Peak Flow measured (overall) = 1.188 cfs (0.768 mgd)*

Proposed Multi-Family Peak Flow = 0.112 cfs **

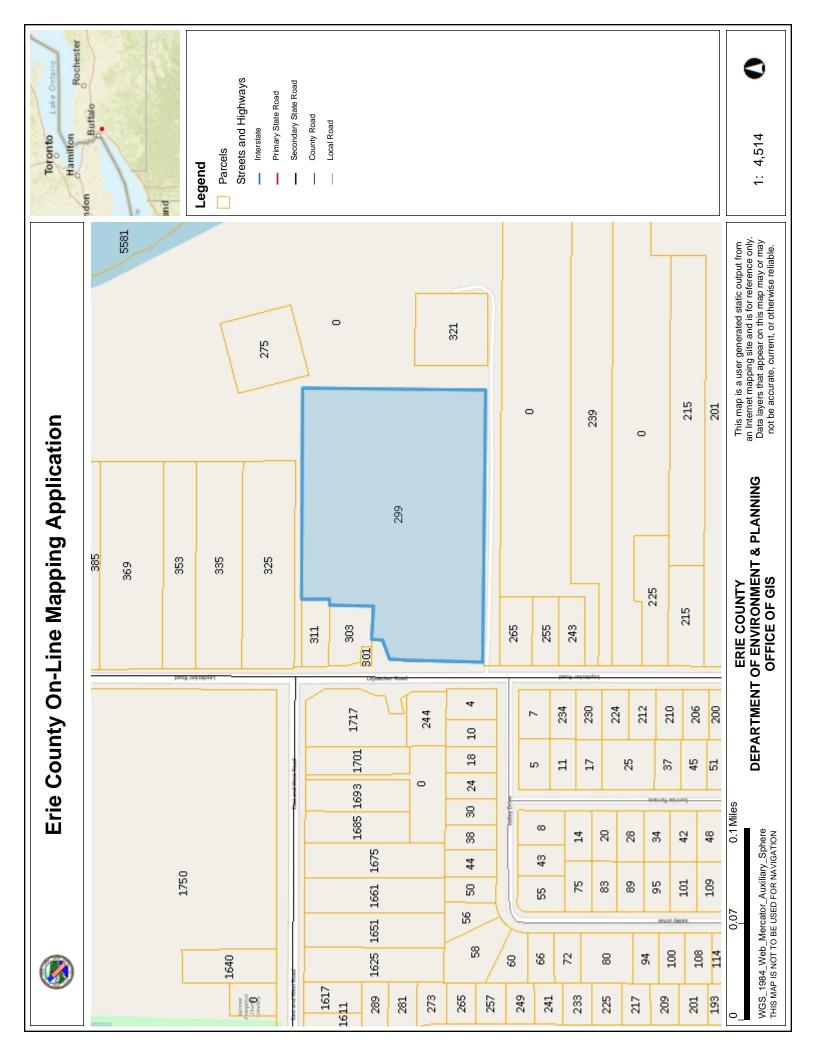
Proposed Peak Flow = 1.300 cfs

Capacity of existing 10" RCP pipe @ 1.5% = 2.905 cfs (inlet pipe)

<u>Conclusion:</u> The proposed peak flow is less than the capacity of the 10" inlet pipe, therefore there is sufficient capacity. At no time did the flow depth exceed the pipe diameter at Node 3 of the downstream monitoring points during the rain events monitored.

The proposed on site sanitary sewer will connect to the sewer system on Leydeceker Road. Downstream effluent from the proposed project will flow through the Leydeceker pump station location, below is an analysis of this pump station.

Leydecker Pump Station:


Existing Pump #1 Flowrate Proposed Multi-Family Peak Flow Proposed Peak Flow at Pump #1	= = =	719.07 gpm 50.33 gpm 769.4 gpm
Existing Pump #2 Flowrate Proposed Multi-Family Peak Flow Proposed Peak Flow at Pump #2	= = =	507.58 gpm 50.33 gpm 557.91 gpm
Existing Pump #1 & #2 Flowrate Proposed Multi-Family Peak Flow Proposed Peak Flow at Pump #1 & #2	= = =	824.82 gpm 50.33 gpm 875.15 gpm

Notes:

Pipe slopes, sizes and materials provided by Clark Patterson Lee for the Town of West Seneca

- * Converted from measurements in TECSmith report dated 1/15/19 & 5/15/19
- ** See Sanitary Sewage Demand Calculations

Location Map

Sanitary Demand Calculations

CARMINA WOOD MORRIS, D.P.C.

487 MAIN STREET, SUITE 500 BUFFALO, NEW YORK, 14203 (716) 842-3165 FAX (716) 842-0263

Project No.: 18.200 Date: 8/2/2019

Project Name: Multi-Family Development

Project Address: 299 Leydecker Road West Seneca, NY

Sanitary Sewage Calculations 1 of 1 Subject:

FAX (716) 84	2-0263			Sheet:	1 of 1
Sanitary Sewage Demand Ca	alculations:				
banitary Sewage Demand Ca	aiculations:				
Proposed Multi-Family					
110 gal/d/unit	t x 10 units		1,100	apd	*use 110 gallons per unit per day (1-bdrm
220 gal/d/unit				gpd	*use 220 gallons per unit per day (2-bdrm
330 gal/d/unit		=		gpd	*use 330 gallons per unit per day (3-bdrm
				in M.H	
Total Site Sanitary Demand	<u>:E</u>	=	<u>17,380</u>	<u>apd</u>	::::::::::::::::::::::::::::::::::::::
* The hydraulic loading rate is	per "Design Standar	ds for Inte	ermediate S	Sized Waste	ewater Treatment Systems" 2014, NYSDEC.
ind Peak Sanitary Demand:					
Dadis - Fari	- D				
Peaking Factor based o		100	ممما	171	Increasite
Total demand:	17,380 gpd /	100	gpcd	= 174	per capita
	Population	າ (P) =		174 people	
	Fopulation	1(F) —		i i 4 people	
Peaking Factor :	(18 +√P) / (4 + √P)	whe	ere P is in	thousands	Q
		VIII		u lousariu.	
Peaking Factor =	. 4.17				
Peak Sanitary Demand	= 17,380 x	4.17	-	72,468	
			=		MGD
			=	0.112	
			=	50.33	gpm
equired Infiltration and Infle	ow Mitigation				
Peak Sanitary Flow			72,468	gpd =	50.3 gpm
			FO 2		204 2
4:1 offset flow per NYSDEC	> requirements	=	50.3	x 4 =	201.3 gpm req'd
Mitigation Credit		=	30	gpm / late	
Willigation Credit			- 30	gpiii / iate	3101
Laterals to be replaced		=	6.71	laterals	7 laterals to be replaced
				ļ	
				ļ	

TECSmith Monitoring Report

TECsmith

TECSMITH, Inc. PO Box 383 Elma, New York 14059-0383 Tel: 716-687-1418 Fax: 716-655-3369

Date: January 15, 2019

SANITARY SEWER FLOW CAPACITY STUDY - Summary Review

Prepared For: 299 Leydecker Capacity Analysis

Chris Woods 487 Main Street, Suite 600 Buffalo, New York 14203 P: (716) 842-3165 F: (716) 842-0263

Project Name: 6625 Leydecker Capacity Analysis

Flow Monitoring Period: December 5, 2018 to January 3, 2019

Rain Events (> 0.5-inches) Monitored: December 6 (0.67") and December 31 (0.53")

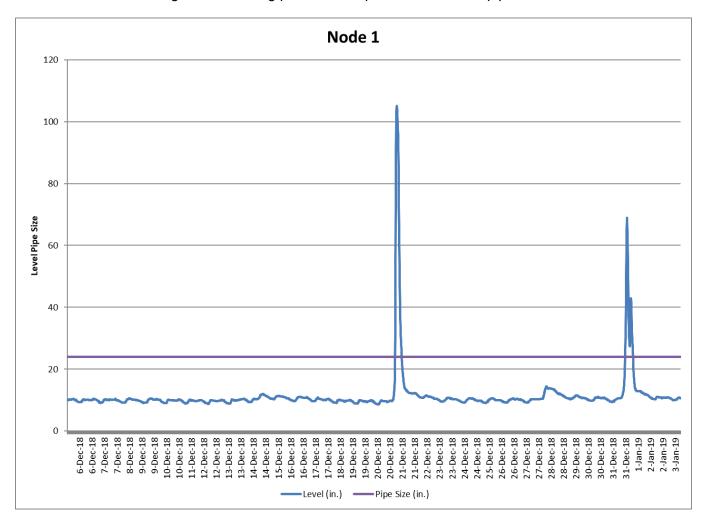
Number of Monitoring Nodes: Three (3) downstream manholes

Node Locations and Descriptions:

Node 1 Creek 24in (24")
 Node 2 216 Angle (8")
 Node 3 Leydecker PS (10")

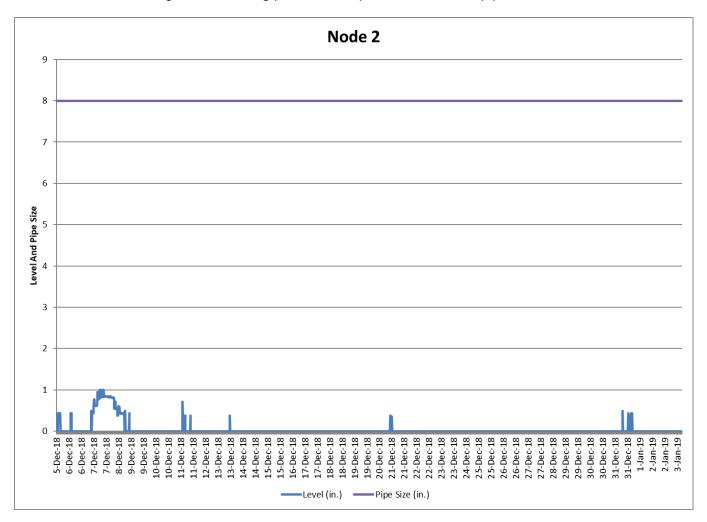
Summary Conclusion:

Based on the data presented in this report, specifically the flow depth measurements recorded (see graphs below)


- At no time the flow depth exceed pipe diameter at Node 2 and Node 3 of the downstream nodes during the rain vents monitored.
- Two times the flow depth exceed pipe diameter at Node 1 of the downstream nodes during the rain vents monitored.

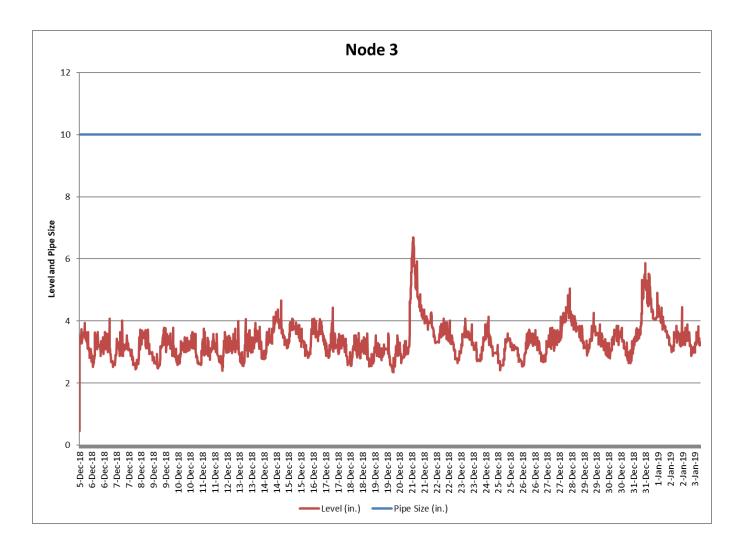
TECSMITH, Inc. PO Box 383 Elma, New York 14059-0383 Tel: 716-687-1418 Fax: 716-655-3369

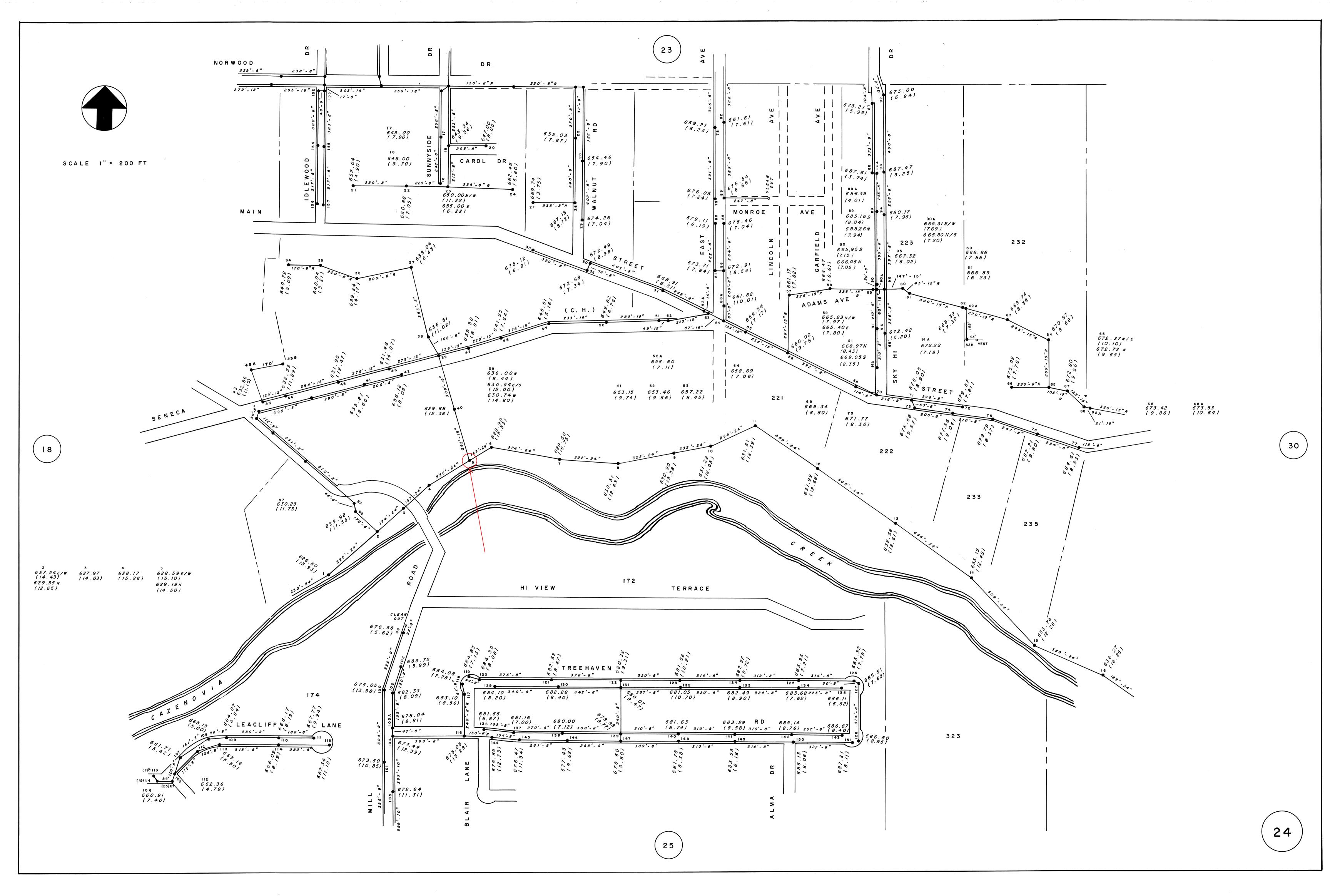
Depth of Flow Capacity Summary:

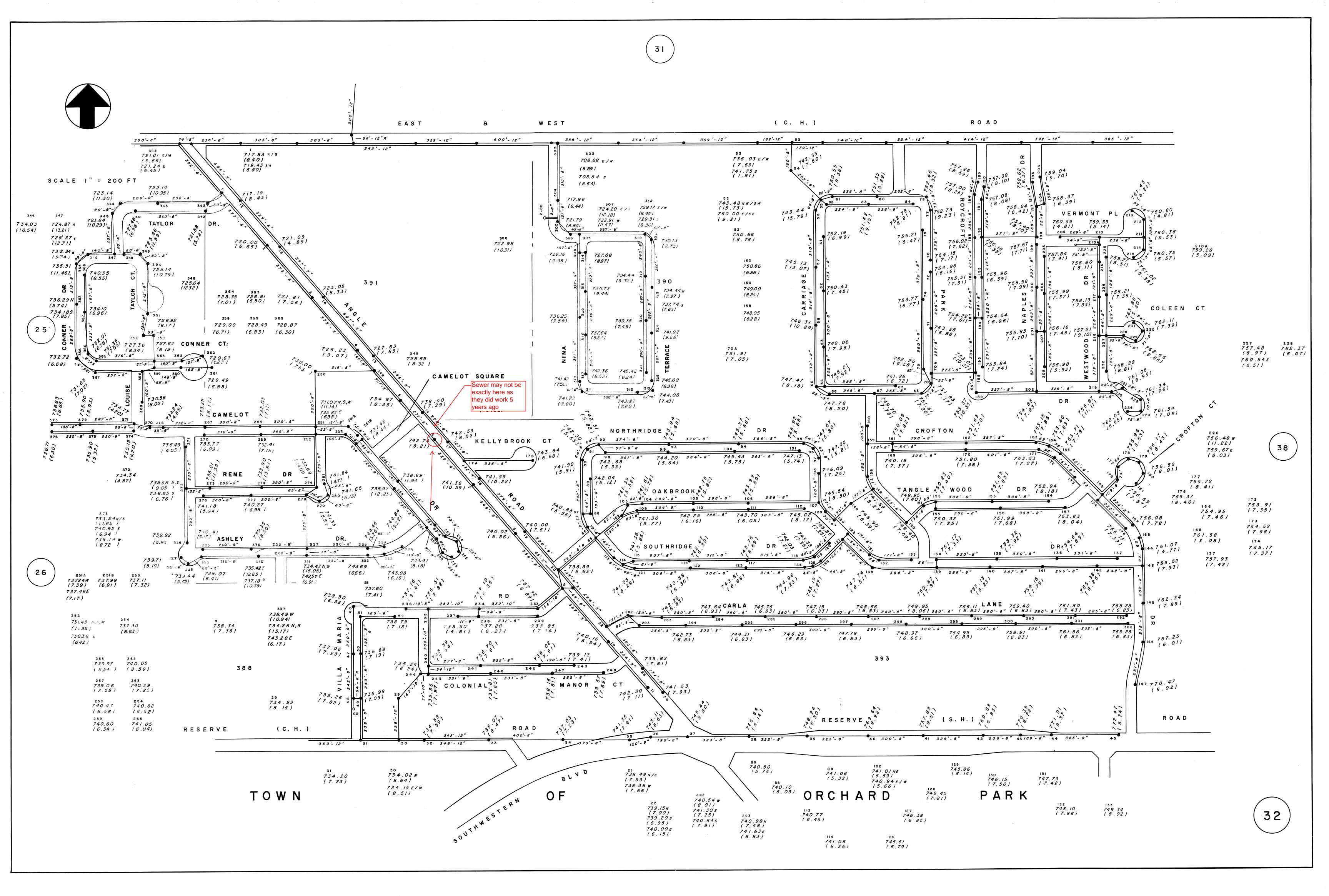

Depth of flow capacity is based on diameter of pipe. See graphs below.

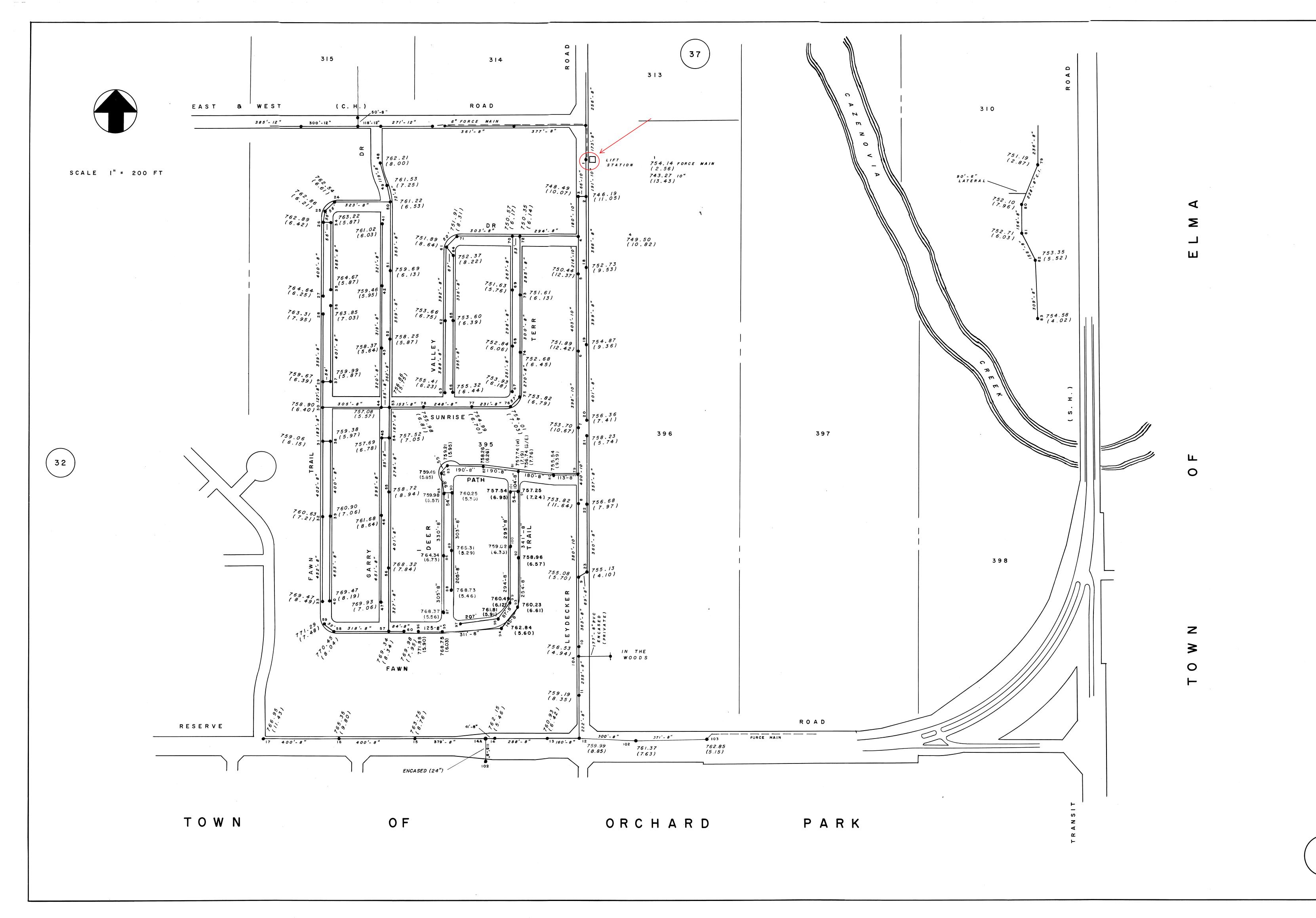
• Two times during the monitoring period did depth of flow exceed pipe diameter at Node 1.

TECSMITH, Inc. PO Box 383 Elma, New York 14059-0383 Tel: 716-687-1418 Fax: 716-655-3369


• At no time during the monitoring period did depth of flow exceed pipe diameter at Node 2.


TECSMITH, Inc. PO Box 383 Elma, New York 14059-0383 Tel: 716-687-1418


Fax: 716-655-3369


• At no time during the monitoring period did depth of flow exceed pipe diameter at Node 3.

Snow		(inches)		0	6.2	0	1.3	0	0	0.5	0	1	0	0	0	0	0	0	0	0	0	0	1.5	9.0	0	0	0	0.3	1.7	0	0	0	0	13.1
Rain₂		(inches)		0	29.0	0	0.05	0	0	90.0	0	0.04	0	0	0.01	0	0	0	0.46	0.45	0	0.02	0.09	0.02	0	0.08	14	0.04	0.11	0.53	0.07	0	0.05	16.75
)")	PEAK	LEVEL (IN)	3.938	4.072	4.008	3.727	3.784	3.649	3.752	4.000	4.054	4.664	4.074	4.079	4.432	3.607	3.602	5.184	6.692	4.080	4.081	4.141	3.593	3.726	4.130	5.040	4.256	3.849	5.863	5.522	4.446	3.836	-
Node 3	Leydecker PS (10")	PEAK FLOW	(MDG)	0.219	0.256	0.242	0.219	0.225	0.189	0.184	0.230	0.231	0.348	0.264	0.265	0.317	0.202	0.195	0.461	0.768	0.267	0.269	0.278	0.184	0.218	0.264	0.440	0.291	0.240	0.589	0.542	0.336	0.224	
	Leyde	FLOW	(GAL x 1,000)	64.739	122.953	116.725	122.087	124.954	122.668	116.267	121.503	129.281	174.603	177.161	161.469	138.910	116.597	109.454	125.510	364.977	173.096	140.857	131.256	119.974	131.238	137.678	253.941	166.763	150.771	224.647	278.394	158.556	64.570	:
		PEAK	LEVEL (IN)	0.435	0.435	0.998	0.847	0.000	0.000	0.717	0.000	0.379	0.000	0.000	0.000	0.000	0.000	0.000	0.379	0.372	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.492	0.435	0.000	0.000	:
Node 2	216 Angle (8")	PEAK FLOW	(MDG)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	!
	2	FLOW	(GAL × 1,000)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	;
)	PEAK	LEVEL (IN)	10.434	10.436	10.463	10.626	10.584	10.211	10.122	10.102	10.410	11.932	11.409	11.062	10.832	10.094	10.037	14.463	105.079	12.322	10.770	10.624	10.667	10.658	10.856	14.393	11.581	11.069	68.871	42.900	11.093	10.825	:
Node 1	Creek 24in (24")	PEAK FLOW	(MGD)	0.771	0.732	0.776	0.846	0.830	0.705	0.713	0.699	0.815	1.262	1.030	0.925	0.822	0.638	0.677	1.478	2.958	1.166	0.901	0.850	0.851	0.760	0.790	1.753	1.019	0.937	2.619	2.307	0.895	0.838	-
	Ö	FLOW	(GAL x 1,000)	251.222	477.241	491.394	461.424	464.867	440.105	422.715	451.829	483.838	876.717	787.471	610.433	522.914	414.358	417.178	407.484	1663.483	838.380	498.998	443.291	450.432	469.470	472.387	1292.062	733.581	511.849	802.712	1357.646	576.128	207.535	:
Date				12/5/2018	12/6/2018	12/7/2018	12/8/2018	12/9/2018	12/10/2018	12/11/2018	12/12/2018	12/13/2018	12/14/2018	12/15/2018	12/16/2018	12/17/2018	12/18/2018	12/19/2018	12/20/2018	12/21/2018	12/22/2018	12/23/2018	12/24/2018	12/25/2018	12/26/2018	12/27/2018	12/28/2018	12/29/2018	12/30/2018	12/31/2018	1/1/2019	1/2/2019	1/3/2019	-

TECsmith

TECSMITH, Inc. PO Box 383 Elma, New York 14059-0383 Tel: 716-687-1418 Fax: 716-655-3369

Date: May 15, 2019

SANITARY SEWER FLOW CAPACITY STUDY - Summary Review

Prepared For: Leydecker Capacity Analysis

Chris Woods 487 Main Street, Suite 600 Buffalo, New York 14203 P: (716) 842-3165 F: (716) 842-0263

Project Name: Leydecker Capacity Analysis

Flow Monitoring Period: March 29, 2019 to April 29, 2019

Rain Events (> 0.5-inches) Monitored: March 31 (0.52"), April 14 (0.67"), April 19 (0.50"), and April 26 (0.59")

Number of Monitoring Nodes: One (1) downstream manholes

Node Locations and Descriptions:

Node 1 West Seneca Psych Center (14")

Summary Conclusion:

Based on the data presented in this report, specifically the flow depth measurements recorded (see graphs below)


- At no time the flow depth exceed pipe diameter at any of the downstream nodes during the rain vents monitored.
- At no time during the monitoring period did the flow at any point slow or stall which would have caused a backup or flooding at the manhole.

TECSMITH, Inc. PO Box 383 Elma, New York 14059-0383 Tel: 716-687-1418 Fax: 716-655-3369

Depth of Flow Capacity Summary:

Depth of flow capacity is based on diameter of pipe. See graphs below.

• At no time during the monitoring period did depth of flow exceed pipe diameter at Node 1.

Date		Node 1		Rain₂
	West Seneca	eca Psych Center	ter (14")	_
	FLOW	PEAK FLOW	PEAK	(inches)
	(GAL x 1,000)	(MGD)	LEVEL (IN)	
3/29/2019	46.947	0.216	1.421	0.05
3/30/2019	120.160	0.355	1.772	6.0
3/31/2019	347.332	0.620	2.196	0.52
4/1/2019	199.044	0.354	1.592	0
4/2/2019	143.392	0.289	1.415	0
4/3/2019	128.218	0.297	1.529	0
4/4/2019	90.122	0.281	1.463	0
4/5/2019	132.838	0.304	1.535	0.15
4/6/2019	133.267	0.488	2.160	0
4/7/2019	130.024	0.448	2.132	0.04
4/8/2019	180.780	0.549	2.290	0.07
4/9/2019	64.722	0.220	1.281	0
4/10/2019	59.940	0.283	1.498	0
4/11/2019	51.372	0.228	1.407	0.04
4/12/2019	116.983	0.379	1.924	0.09
4/13/2019	137.100	0.379	1.942	0
4/14/2019	280.127	0.820	2.743	0.67
4/15/2019	535.984	0.896	2.892	0.11
4/16/2019	388.481	0.724	2.560	0.19
4/17/2019	445.535	0.674	2.372	0
4/18/2019	301.031	0.602	2.227	0
4/19/2019	361.397	0.643	2.263	0.5
4/20/2019	470.383	0.599	2.215	0.38
4/21/2019	343.182	0.583	2.230	0
4/22/2019	214.056	0.427	1.870	0
4/23/2019	168.654	0.382	1.820	0.02
4/24/2019	135.297	0.367	1.823	0
4/25/2019	120.818	0.316	1.722	0.03
4/26/2019	315.085	0.655	2.369	0.59
4/27/2019	257.601	0.566	2.291	0.01
/28/	205.160	0.459	2.132	0.09
4/29/2019	85.574	0.478	2.123	0.09
				4.54

Leydecker Pump Station Drawdown Test Results

	Pump 1 (50 Herts)			Pump 2 (50 Herts)			Pump 1+2 (50 Herts)	(.
Test	est Feet Drained Per Minute	Flow (GPM)	Test	Feet Drained Per Minute	Flow (GPM)	Test	Flow (GPM) Test Feet Drained Per Minute	Flow (GPM)
1	3.4	719.07	1	5.4	507.58	1	3.9	824.82
2	2.9	613.33	2	2.7	571.03	2	3.85	814.24