STORMWATER POLLUTION PREVENTION PLAN

for

ADDITION TO WNY FEDERAL CREDIT UNION 1937 UNION ROAD TOWN OF WEST SENECA, NY

August 10, 2021

Prepared By:

CIVIL | STRUCTURAL | ENGINEERING

755 Seneca Street, Suite 202 Buffalo, New York 14210 716.876.7147 ph

For:

Kulbacks, Inc. Wendling Ct. Lancaster, NY

SUMMARY

This project includes the addition of a 1-story, 3000sf building and drive-thru teller canopy and associated paved parking on a 2.3± acre parcel on the east side of Union Rd, south of Race St in the Town of West Seneca, New York. The development includes a picnic shelter and grove. The C1-zoned site is adjacent to commercial and residential-use properties. The expanded site area of re-development currently contains a frame residence, pavements and storage structures. An existing drainage and sewerage easement traverses the site and which is to remain in force with public utilities to remain uninterrupted during relocation and construction efforts.

Water service: The operating bank facility contains domestic service to remain un-improved. The facility does not contain a fire-protection sprinkler system. A new ¾" PVC domestic service run from the existing facility to the new storage garage is included for maintenance and manual irrigation purposes.

Sanitary sewer currently traverses the project site providing sewer service to the operating facility. This 8" public sewer line is regulated by the Erie County Sewer District (ECSD#1). The operating bank facility contains a service lateral to remain un-improved; however, relocations of the 8" public main are necessary to install the proposed building foundations. Application to the district will be made under separate cover upon approval from the town.

Storm water runoff generated by the site area of development flows overland north and east into the existing public drainage system found traversing the subject property and running north to Race Street, eventually discharging to Buffalo Creek. After the proposed development occurs, runoff from the new building and parking areas will be collected and conveyed to a dry surface detention basin located at the east side of the site. The basin will then discharge into the same public drainage system found on-site. Water quality filtration planters are included to meet the requirements of the NYSDEC SPDES Permit for stormwater discharge from a construction activity >1 acre of soil disturbance.

This development will result in an increase in impervious surfaces on this site. In turn, there will be an increase in the rate of storm water runoff. However, the proposed runoff control measures incorporated in the detention basin outlet will provide the storm water attenuation required to control the discharge of the increased storm water. This project SWPPP contains water quality and water quantity requirements of the NYSDEC SPDES Permit GP-020-001 for storm water discharges from a construction activity. The subject parcel is not within a 100-yr floodplain. This development is not anticipated to disturb wetland or remove old-growth forest habitat.

BACKGROUND DRAINAGE INFORMATION

I. Existing (Pre-Development) Conditions

Portions of developed property within the subject parcel drains overland and into receivers entering to on-site public drainage piping, without detention. Refer to predeveloped mapping in Appendix B for additional information.

II. Hydrologic Soil Group

Hydrologic soil groups (HSG) are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A,B,C, and D) and three dual classes (A/D, B/D, and C/D), the groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well-drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have high shrink-swell potential, soils that have a high water table, soils that have a clay pan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

The predominant soil types within the proposed project disturbance area consist of, PhB, Phelps gravelly loam, **HSG B/D**. Refer to soils map contained in Appendix A for additional information.

III. Proposed (Post-Development) Conditions

The proposed development includes the construction of the new structure and associated paved surface driveway and parking area. Stormwater management is

provided for the new development by constructing runoff filtering conveyances and storage basins prior to discharge of runoff into the existing public storm piping system on-site. The design and detail of the proposed on-site drainage system shall meet the intent of the NYSDEC mandated practices for stormwater management, including the extreme flood storm event.

The proposed on-site system utilizes a bio-retention-based planter to achieve the Green Infrastructure and Runoff Reduction (RRv) goals of the NYSDEC. Use of infiltration practices require on-site soils be tested for percolation and infiltration into natural subsoils at the elevation of the bottom of the practice. Due to the presence of HSG D subsoils consisting of silty-clay, these tests are deferred and requisite under-drainage shall be provided to convey stormwater from the filter practice(s) listed.

The proposed surface runoff storage basins and outlet control structure will provide the stormwater controls required to attenuate the discharge rate of the increased storm water in accordance with the Town of West Seneca and NYSDEC requirements. Refer to post-developed mapping in Appendix B for additional information.

STORMWATER MANAGEMENT

Design Criteria

The design of the storm water facilities will be in accordance with the following:

- Town of West Seneca Storm Water Drainage Policy and Construction Standards
- ii. NRCC Extreme Precipitation Tables
- iii. New York State Department of Environmental Conservation (NYSDEC) Stormwater Design Manual of 2015.

a. Stormwater Conveyance

The stormwater runoff generated by this development will be conveyed overland or culverted to a surface stormwater detention basin. The pitched roof structure downspout collection leader piping shall convey roof drainage to detention.

Tributary areas were estimated for the drainage to each practice or conveyance, and were calculated using the Rational Method. The 10-year rainfall intensities were used to estimate the tributary runoff. Culvert pipe sizing chart is included in Appendix B.

Stormwater Detention

According to the Town of West Seneca policy for storm water drainage, detention is required when the storm water runoff from a site is increased due to the increase in impervious surfaces resulting from a new development. The proposed construction of the

building addition and paved surface parking areas (+0.69ac) will result in an increase in impervious surfaces. Therefore, storm water detention will be provided to limit the future peak discharge.

The primary outlet from the surface detention basin is a 10-inch pipe. The hydrographs for the developed conditions 1, 10, 25, and 100-year storm events were then routed through the detention systems to establish the peak outflows to the existing storm sewer. This was then compared to the pre-developed runoff from the 1, 10 and 100-year storm events.

The SCS Unit Hydrograph Method (TR-20) was utilized to estimate the peak discharges associated with the various storm events for both the existing and the proposed conditions. An elevation-storage-discharge relationship was established for the detention basins and the proposed outfall to the public storm drainage system. The results of the calculations are tabulated below:

Detention Basin [1P]	1-Year	10-Year	25-yr	100-Year
Pre-Dev Outfall to off-site [1S], cfs:	1.21	3.89	-	8.79
Peak Post-Dev Basin Inflow, cfs: o	0.90	2.96	4.27	6.65
High Water Elevation Detention Basin, feet: (top of bank 775.0)	620.98	621.63	622.06	622.86
Peak Storage Volume Detention Basin, ac-ft:	0.010	0.027	0.041	0.074
Post-Dev Basin Outfall, cfs:	0.91	2.78	3.59	5.17

The discharge rate 1, 10, and 100-year developed conditions storm events from the total development are less than the existing conditions 1, 10 and 100-yr storm events in accordance with the water quantity controls as mandated by the NYSDEC SPDES Permit requirements. In addition, the 25-yr event outfall is less than the pre-existing 10-yr event per the Town of West Seneca requirements. Note the top of detention basin bank el. 623.5 providing 8" of freeboard in the extreme storm event.

Runoff Reduction Techniques and pre-treatment of low-flow runoff events also provide water quality controls. Runoff Reduction was achieved by implementing a Bioretention-based planter as Green Infrastructure Techniques (GIT):

GIT	Impervious Area (acre)	RRv Credit (ac-ft)	Area Credit (acre)
Bio-retention	0.69	0.023	0
Total	0.69	0.023	0

	Area (acres)	Impervious area (acres)	WQv/RRv	
Initial	1.23	0.69	0.060	ac-ft
Credits	0	0	0.023	ac-ft
Adjusted	1.23	0.69	0.034	ac-ft

Note that the RRv credits obtained exceed the NYSDEC minimum value of 0.012 ac-ft (or 20% of the total WQv) based on the Hydrologic Soil types present onsite. The use of additional Runoff Reduction Techniques for the remaining Water Quality (WQv) is limited by space constraints and the reduced effectiveness of the natural subsoil (gravelly-clay HSG D). The Bioretention filtration methods selected will be constructed by installing an undercut volume of new filter media and perforated under-drain pipe system in filter stone bedding.

Stream Channel Protection volume (CPv) which is 24-hr extended detention of the 1-yr storm event minus RRv credit = 0.027ac-ft which is contained in the bio-basins and detention basin and discharged at a reduced rate.

The hydrographs, reservoir report, outlet structure information and routing calculations are included in Appendix B.

COMPONENTS OF EROSION CONTROL

Refer to Planned Erosion & Sediment Control Practices at the end of this report.

I. Daily Site Maintenance (Performed by Owner/Contractor)

At the beginning and end of each day of construction, the Contractor shall walk the site to determine the presence of any extraneous material (litter, packaging and debris) and to review all stormwater outfall locations. All debris shall be picked up and disposed of in an appropriate manner.

Construction chemicals shall be stored in an area that is away from any temporary or permanent stormwater drainage facilities and in an area that is elevated above ground surface, so that surface water runoff does not deteriorate the associated container/bag. All containers shall be adequately sealed at the end of each workday or at the end of use. Large fuel tank(s), if required, shall be located within a secondary containment vessel, size equal to or greater than the capacity of the fuel tank used.

Construction debris shall be stockpiled in one particular area within the site that is located away from any permanent or temporary storm drainage facility. All construction debris shall be removed from the site and disposed of in an appropriate manner. Locate trash receptacle on high ground so as not to allow stormwater runoff to collect

within the bin(s). The material/equipment storage shall be monitored on a daily basis for any identified chemical (oil, grease, etc.) spills.

II. Construction Sequence

- Obtain all necessary shop drawing approvals and applicable permits.
- Conduct a pre-construction meeting.
- Perform stakeout of property limits and facilities. Including 5-acre max limits of earthmoving in phases described on plan. Install orange construction fencing surrounding earthmoving limits, including wetland to be preserved and select trees indicated to remain.
- Install perimeter silt fencing around proposed disturbance area; and construct equipment/ material storage area(s).
- Install stabilized construction entrance and wheel wash station;
- Maintain all erosion and sediment control devices throughout the construction period.
- Rough grade site area including placement and compaction of fill as needed.
- Construct site utilities, stormwater drainage inlets, piping and basins. Install all remaining protection measures including temporary sediment basins at proposed planters.
- Construct and install building and pavements.
- Excavate temporary sediment basins to install bio-filter media after pavement binder is installed.
- Final grade entire site including bio-media and topsoil placement, seed and mulch landscaped areas.
- Remove silt fence and other erosion control devices after vegetation has been established in topsoil/seeded areas.

III. Post Construction Operation & Maintenance (Performed by Owner)

- $\alpha.$ On a quarterly basis and following rain events of 0.5-inch or greater, perform the following:
 - Inspect catch basins and storm piping for debris and sediments;
 - 2. Remove and properly dispose of any collected debris from the structures;
 - 3. Flush piping with water, if necessary to remove accumulated sediment.
 - Inspect grassed/landscaped areas for un-vegetated area or areas with less than 80% healthy stand of grass and reseed and mulch as necessary.
 Water areas daily if reseeded through July and August.
 - Maintain all lawn areas by regular mowing, including the grassed slopes and bottom of the stormwater detention basin and drainage swales. Any eroded areas shall be re-graded, seeded and mulched immediately.
 - Refer to Appendix D for Bioretention Bed, conveyance channels and Detention Basin Operations and Maintenance Plans.

IV. OWNER RESPONSIBILITIES

The responsible party for implementation of all components of the Stormwater Pollution Prevention Plan (SWPPP) will be ______, who will be responsible for meeting the requirements as defined within this SWPPP and the conditions of the SPDES General Permit GP-0-20-001. These responsibilities include but are not necessarily limited to the following:

- An initial site assessment shall be performed prior to start of construction.
- Ensure that daily site maintainers and weekly maintenance requirements are met.
- Notify all contractors and subcontractors of the required practices and will also be responsible for making sure that a qualified professional (as defined by the SPDES General Permit) completes the required inspection services.
- The permit-holder shall ensure that the SWPPP is kept current and is amended whenever there is a significant change in design, construction, operation or maintenance or if the SWPPP proves to be ineffective or when any new contractor or subcontractor will be implementing any measures of the SWPPP.
- The permit-holder shall ensure that all inspection reports are maintained in a site log book, that a current copy of the SWPPP, NOI and other related documentation are kept on-site and are readily available for review by NYSDEC, the Town or other interested parties from the date of initiation of construction activities until the date of final site stabilization.
- The permit-holder shall post at the site, in a publicly accessible location, a summary of the site inspection activities on a monthly basis. (Recommend a mailbox mounted on pole)
- The permit-holder shall prepare a written summary of its status with respect to compliance with the SPDES General Permit at least once every three (3) months during which coverage under the permit exists. The summary should address the status of achieving each component of the SWPPP.
- Upon final site stabilization, a final site inspection shall be performed.
- The permit-holder shall file a Notice of Termination (NOT) with NYSDEC identifying the termination of permit coverage (a copy of blank NOT is included herein).
- The permit-holder shall retain copies of all SWPPP and related documents for a period of at least five (5) years from the date the site is finally stabilized.

OWNER/OPERATOR CERTIFICATION

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that false statements made here in are punishable as a Class A Misdemeanor pursuant to Section 210.45 of the Pena) Law."

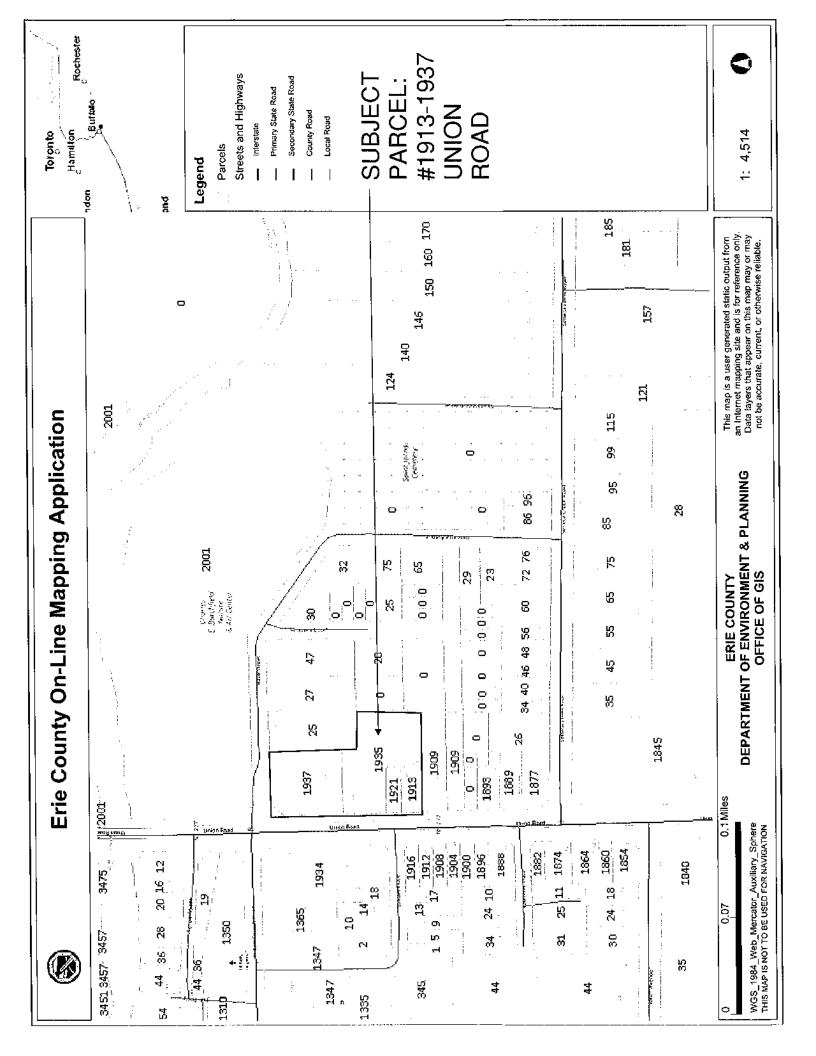
	Owner/Operator Signature	Title
	Name (Printed)	/
*CONTRAC	CTOR CERTIFICATION:	
	the SWPPP and agree to implement any inspector during a site inspection. I also use comply with the terms and conditions of the Pollutant Discharge Elimination System (discharges from construction activities and contribute to a violation of water quality I am aware that there are significant penality.	d that it is unlawful for any person to cause
	Contractor Signature	Title
	Name (Printed)	// Date

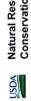
 Note: Only contractors/subs that disturb soil or implement SMP's and Erosion Control measures are required to sign.

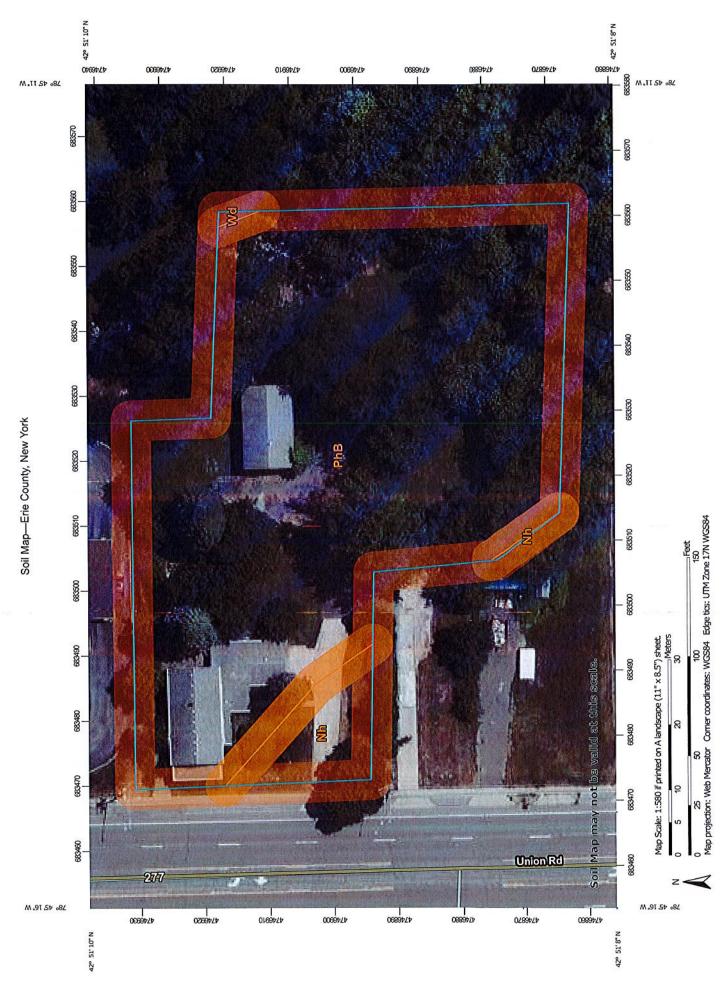
The certifications must be executed before Public/Private Improvement Permits can be issued.

PERMITS

The proposed construction of the structure, parking areas and drainage must receive approval from the Town of West Seneca and a Notice of Intent/MS4 Acceptance to discharge storm water from a construction activity must be filed with the NYSDEC. A NYSDOT HWP application shall be made for all restoration work in the state highway, and ECSD public sewer relocation application must be made and approved prior to construction.


PLANNED EROSION AND SEDIMENTATION CONTROL PRACTICES


- 1. Temporary Gravel Construction Entrance/Exit: The existing paved access driveway and curb cut from Union Road shall be used by all construction traffic. A wheel wash station shall be installed adjacent to the driveway connected to an existing fire hydrant with (contains existing backflow preventer and meter) or the contractor may elect to use a water storage tank. All vehicles exiting onto public roadways shall be cleaned of sediment and stones. The public roadway shall be cleaned immediately of any sediment and stone deposited from a construction vehicle.
- 2. Silt Fencing: Sediment control fencing and/or 12" dia. compost filter sock shall be installed along the perimeter of the parcel or where shown. Temporary soil stockpiles shall also contain silt fence surround and be temporarily seeded if left unworked and barren for greater than 14-days.
- 3. Surface Stabilization: All disturbed soils shall be stabilized as soon as grade is established, either in fill or cut areas, with either vegetation and mulch or geotextile fabric and stone subbase in building pad and paved parking lot footprints. Temporary or permanent stabilization measures must be initiated by the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased. No disturbed soils shall remain barren and un-worked for more than 14-days.
- **4. Dust Control:** Dust shall be controlled by sprinkling during extended periods of soil exposure. See item #1 above for optional temporary water sources.
- 5. Sedimentation Basin: Excavate for stormwater planters but do not install bio-filter media until after tributary drainage area is stabilized with pavement binder.
- 6. Excavated Storm Drain Inlet Protection: Installation of receivers shall leave the rim above the surrounding grades to allow for pooling and settlement of sediment prior to runoff entering the storm sewer piping. A geotextile fabric shall also be installed under the grate of each receiver which shall be regularly cleaned of any built-up sediment.
- 7. **Land Grading:** All temporary cut slopes shall not exceed 3h:1v to avoid instability due to wet weather. Cut slopes shall be fine graded immediately after rough grading and stabilized per Item #4 above. Fill areas shall be 2h:1v max with fill depths from 1-ft to 2-ft anticipated. Fill layers shall not exceed 8-inches in depth and compacted to 95% modified proctor in pavement areas, and 90% in lawn/landscape beds.
- 8. Concrete truck wash pit: Install it and USE IT for all spoil concrete, grout, and mortar.


Planning

Practice	Description	Application
Preservation of Undisturbed Areas	Delineate and place into permanent conservation undisturbed forests, native vegetated areas, riparian corridors, wetlands, and natural terrain.	Considered & Not Applied
Preservation of Buffers	Define, delineate and preserve naturally vegetated buffers along perennial streams, rivers, shorelines and wetlands.	N/A
Reduction of Clearing and Grading	Limit clearing and grading to the minimum amount needed for roads, driveways, foundations, utilities and stormwater management facilities.	Considered & Applied
Locating Development in Less Sensitive Areas	Avoid sensitive resource areas such as floodplains, steep slopes, erodible soils, wetlands, mature forests and critical habitats by locating development to fit the terrain in areas that will create the least impact.	Considered & Applied
Open Space Design	Use clustering, conservation design or open space design to reduce impervious cover, preserve more open space and protect water resources.	Considered & Applied
Soil Restoration	Restore the original properties and porosity of the soil by deep till and amendment with compost to reduce the generation of runoff and enhance the runoff reduction performance of post construction practices.	Considered & Applied
Roadway Reduction	Minimize roadway widths and lengths to reduce site impervious area	N/A
Sidewalk Reduction	Minimize sidewalk lengths and widths to reduce site impervious area	Considered & Applied
Driveway Reduction	Minimize driveway lengths and widths to reduce site impervious area	Considered & Applied
Cul-de-sac Reduction	Minimize the number of cul-de-sacs and incorporate landscaped areas to reduce their impervious cover.	N/A
Building Footprint Reduction	Reduce the impervious footprint of residences and commercial buildings by using alternate or taller buildings while maintaining the same floor to area ratio.	Considered & Not Applied
Parking Reduction	Reduce imperviousness on parking lots by eliminating unneeded spaces, providing compact car spaces and efficient parking lanes, minimizing stall dimensions, using porous pavement surfaces in overflow parking areas, and using multi-storied parking decks where appropriate.	Considered & Not Applied

APPENDIX A

MAP LEGEND

Special Line Features Streams and Canals Interstate Highways Very Stony Spot Major Roads US Routes Stony Spot Spoil Area Wet Spot Other Rails Water Features Transportation 8 ŧ Soil Map Unit Polygons Area of Interest (AOI) Soil Map Unit Points Soil Map Unit Lines Closed Depression Special Point Features **Gravelly Spot Borrow Pit Gravel Pit** Clay Spot Area of Interest (AOI) Blowout 9 0 Soils

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800

Warning: Soil Map may not be valid at this scale.

contrasting soils that could have been shown at a more detailed misunderstanding of the detail of mapping and accuracy of soil Enlargement of maps beyond the scale of mapping can cause line placement. The maps do not show the small areas of

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

distance and area. A projection that preserves area, such as the Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Aerial Photography

Marsh or swamp

Lava Flow

Landfill

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Background

Local Roads

Soil Survey Area: Erie County, New York

Survey Area Data: Version 20, Jun 11, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jul 4, 2020—Jul 10,

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Severely Eroded Spot

Slide or Slip

Sinkhole

Sodic Spot

Sandy Spot

Saline Spot

Page 2 of 3

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Nh	Niagara silt loam, till substratum	0.1	5.9%
PhB	Phelps gravelly loam, 3 to 8 percent slopes	1.0	93.9%
Wd	Wayland soils complex, 0 to 3 percent slopes, frequently flooded	0.0	0.2%
Totals for Area of Interest		1.1	100.0%

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing Yes

State

New York

Location

Latitude 78.866 degrees West 42.902 degrees North

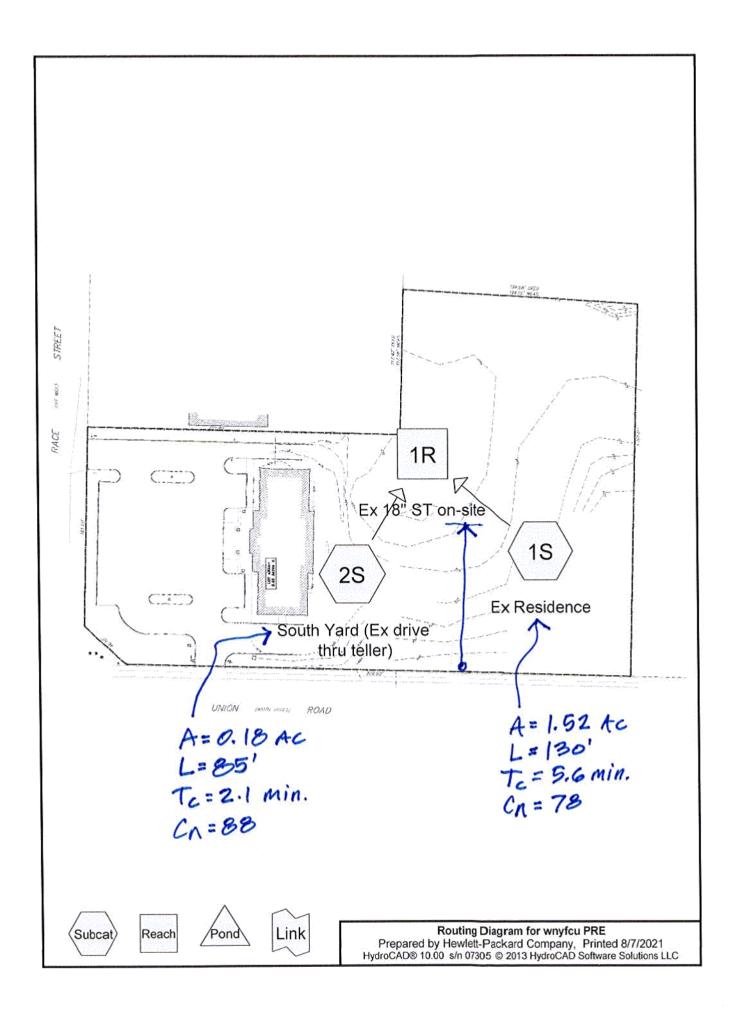
Elevation 0 feet

Date/Time Fri, 28 Aug 2020 13:53:33 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.66	0.82	1.00	1yr	0.71	0.93	1.13	1.33	1.55	1.80	2.13	1yr	1.59	2.05	2.47	2.96	3.47	1yr
2yr	0.31	0.47	0.58	0.77	0.97	1.19	2yr	0.84	1.09	1.34	1.60	1.88	2.19	2.50	2yr	1.94	2.40	2.83	3.37	3.87	2yr
5yr	0.36	0.56	0.70	0.94	1.21	1.49	5yr	1.04	1.36	1.68	1.99	2.32	2.67	3.05	5yr	2.37	2.94	3.43	4.05	4.63	5yr
10yr	0.41	0.64	0.81	1.10	1.43	1.77	10yr	1.23	1.62	2.01	2.36	2.73	3.11	3.56	10yr	2.75	3.42	3.97	4.65	5.31	10yr
25yr	0.48	0.77	0.98	1.35	1.79	2.22	25yr	1.54	2.03	2.51	2.94	3.37	3.80	4.35	25yr	3.36	4.18	4.81	5.58	6.35	25yr
50yr	0.55	0.88	1.13	1.57	2.12	2.64	50yr	1.83	2.41	2.98	3.48	3.95	4.42	5.07	50yr	3.91	4.87	5.57	6.42	7.28	50yr
100yr	0.62	1.01	1.30	1.84	2.51	3.14	100yr	2.17	2.87	3.55	4.12	4.65	5.14	5.90	100yr	4.55	5.68	6.46	7.37	8.34	100yr
200yr	0.72	1.17	1.51	2.17	2.99	3.74	200yr	2.58	3.42	4.21	4.86	5.46	6.00	6.88	200yr	5.31	6.62	7.48	8.48	9.57	200yr
500yr	0.86	1.42	1.85	2.68	3.76	4.70	500yr	3.24	4.32	5.29	6.06	6.75	7.35	8.43	500yr	6.50	8.11	9.10	10.20	11.48	500yr

Lower Confidence Limits


	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.22	0.34	0.42	0.57	0.70	0.84	1yr	0.60	0.82	0.87	1.12	1.40	1.64	2.00	1yr	1.45	1.92	2.29	2.76	3.28	1yr
2yr	0.29	0.45	0.55	0.75	0.93	1.06	2yr	0.80	1.04	1.17	1.43	1.72	2.13	2.45	2yr	1.89	2.35	2.76	3.30	3.79	2yr
5yr	0.33	0.51	0.63	0.86	1.10	1.26	5yr	0.95	1.23	1.39	1.69	2.02	2.50	2.88	5yr	2.22	2.77	3.23	3.82	4.38	5yr
10yr	0.36	0.55	0.68	0.96	1.23	1.43	10yr	1.07	1.39	1.57	1.89	2.28	2.81	3.25	10yr	2.49	3.13	3.63	4.26	4.89	10yr
25yr	0.41	0.62	0.77	1.10	1.45	1.67	25yr	1.25	1.64	1.83	2.20	2.65	3.29	3.81	25yr	2.91	3.67	4.24	4.92	5.63	25yr
50yr	0.44	0.67	0.84	1.20	1.62	1.88	50yr	1.40	1.84	2.05	2.46	2.97	3.70	4.31	50yr	3.28	4.14	4.77	5.49	6.28	50yr
100yr	0.48	0.73	0.91	1.32	1.81	2.11	100yr	1.56	2.06	2.29	2.74	3.32	4.16	4.85	100yr	3.68	4.66	5.37	6.13	7.00	100yr
200yr	0.53	0.79	1.00	1.45	2.02	2.37	200yr	1.75	2.32	2.55	3.04	3.69	4.69	5.48	200yr	4.15	5.27	6.05	6.84	7.81	200yr
500yr	0.59	0.88	1.13	1.64	2.33	2.75	500yr	2.01	2.69	2.93	3.47	4.23	5.51	6.43	500yr	4.87	6.18	7.06	7.91	9.03	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.30	0.46	0.57	0.76	0.93	1.08	1yr	0.81	1.05	1.20	1.43	1.72	1.93	2.28	1yr	1.71	2.19	2.62	3.12	3.65	1yr
2yr	0.32	0.49	0.61	0.82	1.01	1.17	2yr	0.87	1.14	1.29	1.57	1.87	2.26	2.59	2yr	2.00	2.49	2.92	3.48	3.99	2yr
5yr	0.39	0.61	0.75	1.03	1.31	1.54	5yr	1.13	1.50	1.69	2.07	2.46	2.86	3.21	5yr	2.53	3.09	3.62	4.27	4.88	5yr
10yr	0.47	0.72	0.89	1.25	1.61	1.90	10yr	1.39	1.85	2.11	2.55	3.04	3.40	3.80	10yr	3.01	3.65	4.29	5.00	5.72	10yr
25yr	0.60	0.91	1.13	1.61	2.12	2.52	25yr	1.83	2.47	2.80	3.39	4.01	4.31	4.76	25yr	3.81	4.58	5.36	6.17	7.03	25yr
50yr	0.71	1.08	1.34	1.93	2.60	3.13	50yr	2.25	3.06	3.48	4.20	4.94	5.15	5.66	50yr	4.56	5.44	6.35	7.22	8.24	50yr
100yr	0.85	1.29	1.61	2.33	3.20	3.87	100yr	2.76	3.78	4.33	5.20	6.09	6.17	6.71	100yr	5.46	6.45	7.53	8.46	9.64	100yr
200yr	1.02	1.54	1.95	2.82	3.93	4.79	200yr	3.39	4.68	5.40	6.45	7.50	7.40	7.96	200yr	6.55	7.65	8.94	9.92	11.30	200yr
500yr	1.30	1.94	2.50	3,63	5.16	6.35	500yr	4.45	6.21	7.20	8.56	9.90	9.43	9.98	500yr	8.34	9.60	11.21	12.26	13.93	500yr

APPENDIX B

Printed 8/7/2021 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.858	61	>75% Grass cover, Good, HSG B (1S, 2S)
0.709	98	House, garages, pavements, HSG B (1S)
0.133	98	Roof, paved drive-thru, HSG B (2S)
1.700	79	TOTAL AREA

wnyfcu PRE
Prepared by Hewlett-Packard Company
HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Printed 8/7/2021 Page 3

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.858	0.000	0.000	0.000	0.858	>75% Grass cover, Good	1S, 2S
0.000	0.709	0.000	0.000	0.000	0.709	House, garages, pavements	
0.000	0.133	0.000	0.000	0.000	0.133	Roof, paved drive-thru	2S
0.000	1.700	0.000	0.000	0.000	1.700	TOTAL AREA	

Printed 8/7/2021 Page 4

Summary for Subcatchment 1S: Ex Residence

Runoff = 0.95 cfs @ 11.99 hrs, Volume=

0.048 af, Depth= 0.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=1.80"

Area	(ac) C	N Des	cription		
					nts, HSG B
Q.	<u>810 </u>	31 >75°	% Grass co	over, Good	, HSG B
1.	519 7	78 Wei	ghted Aver	age	
0.	810	53.3	2% Pervio	us Area	
0.	709	46.6	8% Imper	ious Area	
Tc	Length	Słope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.8	80	0.0470	1.64		Sheet Flow, overland front yard
					Smooth surfaces n= 0.011 P2= 2.50"
4.8	50	0.0400	0.17		Sheet Flow, overland back yard
					Grass: Short n= 0.150 P2= 2.50"
5.6	130	Total I	ncreased t	o minimum	$T_{\rm C} = 6.0 \text{min}$

130 Total, Increased to minimum Tc = 6.0 min

Summary for Subcatchment 2S: South Yard (Ex drive thru teller)

Runoff = 0.26 cfs @ 11.98 hrs, Volume=

0.012 af, Depth= 0.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=1.80"

	Area	(ac) (N De	scription		
*	0.	133	98 Ro	of, paved dr	ive-thru, HS	GG B
	0.	048	61 >7	5% Grass co	over, Good,	HSG B
	0.	181	88 We	ighted Aver	age	•
	0.	048	26.	52% Pervio	us Area	
	0.	133	73.	48% Imper	/ious Area	
	Tc (min)	Length (feet)		,	Capacity (cfs)	Description
	0.9	10	0.1100	0.19		Sheet Flow, overland lawn
_	1.2	75	0.0150	1.02		Grass: Short n= 0.150 P2= 2.50" Sheet Flow, overland to ex rcvr Smooth surfaces n= 0.011 P2= 2.50"
	2.1	85	Total,	Increased t	o minimum	Tc = 6.0 min

Prepared by Hewlett-Packard Company

HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Printed 8/7/2021 Page 5

Summary for Reach 1R: Ex 18" ST on-site

Inflow Area = 1.700 ac, 49.53% Impervious, Inflow Depth = 0.42" for 1-Year event

Inflow = 1.21 cfs @ 11.98 hrs, Volume= 0.060 af

Outflow = 1.21 cfs @ 11.98 hrs, Volume= 0.060 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs

Printed 8/7/2021

HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment 1S: Ex Residence

Runoff =

3.29 cfs @ 11.98 hrs, Volume=

0.153 af, Depth= 1.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.11"

_	Area	(ac) (<u>CN De</u>	scription		
*		709		use, garage		
	0.	<u>810</u>	<u>61 >7:</u>	5% Grass co	over, Good,	HSG B
	1.	519		eighted Aver		
	0.	810	53.	32% Pervio	us Area	
	0.	709	46	.68% Imperv	ious Area	
	Tc	Length	•	•	Capacity	Description
	(min)	(feet)	(ft <u>/ft</u>) (ft/sec)	(cfs)	
	0.8	80	0.0470	1,64		Sheet Flow, overland front yard
						Smooth surfaces n= 0.011 P2= 2.50"
	4.8	50	0.0400	0.17		Sheet Flow, overland back yard
						Grass: Short n= 0.150 P2= 2.50"
	5.6	130	Total,	Increased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 2S: South Yard (Ex drive thru teller)

Runoff =

0.61 cfs @ 11.97 hrs, Volume=

0.029 af, Depth= 1.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.11"

	Area ((ac)	CN De	scription		
*	0.	133	98 Ro	of, paved dr	ive-thru, HS	SG B
	0.0	048	<u>61 >7</u>	5% Grass co	over, Good,	HSG B
	0.	181	88 We	eighted Aver	age	
	0.0	048	26	.52% Pervio	us Area	
	0.	133	73.	48% Imperv	vious Area	
	Tc	Length	•	· · · · · · · · · · · · · · · · · · ·	Capacity	Description
_	(min)	(feet)	(ft/ft) (f t/sec)	(cfs)	
	0.9	10	0.1100	0.19		Sheet Flow, overland lawn
						Grass: Short n= 0.150 P2= 2.50"
	1.2	75	0.015	1.02		Sheet Flow, overland to ex rcvr
						Smooth surfaces n= 0.011 P2= 2.50"
	2.1	85	Total,	Increased t	to minimum	Tc = 6.0 min

HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Page 7

Printed 8/7/2021

Summary for Reach 1R: Ex 18" ST on-site

Inflow Area = 1.700 ac, 49.53% Impervious, Inflow Depth = 1.28" for 10-Year event

Inflow = 3.89 cfs @ 11.98 hrs, Volume= 0.182 af

Outflow = 3.89 cfs @ 11.98 hrs, Volume= 0.182 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs

Printed 8/7/2021

HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Page 8

Summary for Subcatchment 1S: Ex Residence

Runoff 7.63 cfs @ 11.97 hrs, Volume= 0.358 af, Depth= 2.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.14"

	Area	(ac) C	N Des	cription		
*	0.	709	98 Hou	ise, garage	s, pavemer	nts, HSG B
_	0.	810	61 > 75	% Grass co	over, Good	, HSG B
	1.	519	78 We	ighted Aver	age	
	0.	810	53.0	32% Pervio	us Area	
	0.	709	46.6	38% Imper	ious Area	
	Tc (min)	Length (feet)		•	Capacity (cfs)	Description
	8.0	80	0.0470	1.64		Sheet Flow, overland front yard
	4.8	50	0.0400	0.17		Smooth surfaces n= 0.011 P2= 2.50" Sheet Flow, overland back yard Grass: Short n= 0.150 P2= 2.50"
	5.6	130	Total,	Increased t	o minimum	1 Tc = 6.0 min

Summary for Subcatchment 2S: South Yard (Ex drive thru teller)

1.16 cfs @ 11.97 hrs, Volume= Runoff

0.057 af, Depth= 3.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.14"

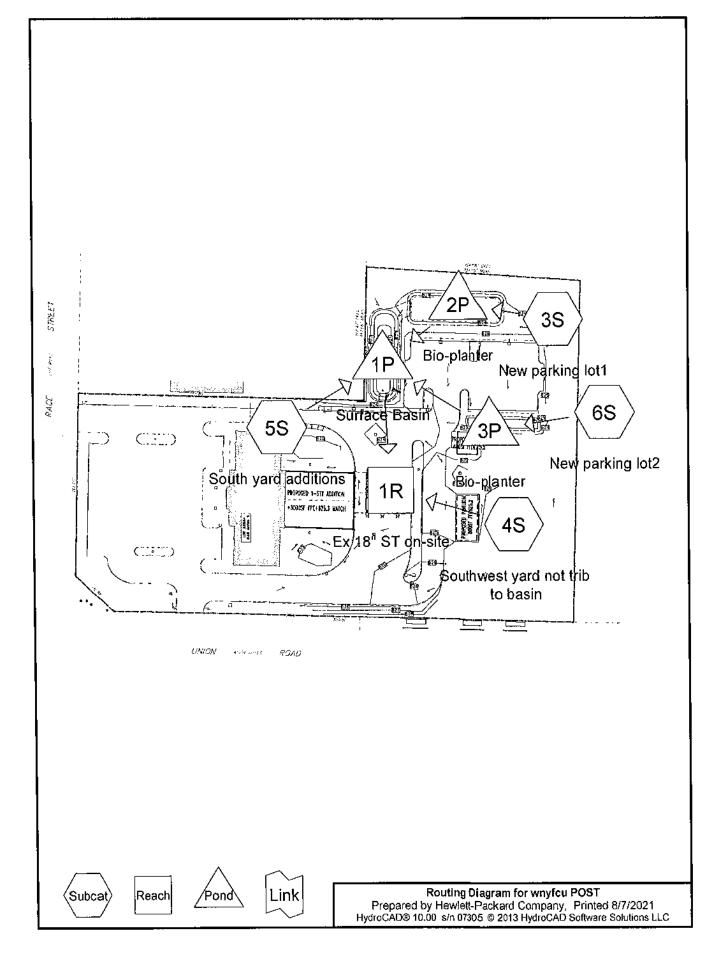
_	Area ((ac) (CN De	scription		
*	0.	133	98 Ro	of, paved dr	ive-thru, HS	SG B
	0.	048	61 >7	5% Grass co	over, Good,	HSG B
	0.	181	88 We	eighted Aver	age	
	0.	048	26.	52% Pervio	us Area	
	0.	133	73.	48% Imperv	rious Area	
	Tc (min)	Length (feet)		•	Capacity (cfs)	Description
	0.9	10	0.1100	0.19		Sheet Flow, overland lawn
	1.2	75	0.0150	1.02		Grass: Short n= 0.150 P2= 2.50" Sheet Flow, overland to ex rcvr Smooth surfaces n= 0.011 P2= 2.50"
	2.1	85	Total,	increased t	o minimum	Tc = 6.0 min

Prepared by Hewlett-Packard Company

HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Page 9

Printed 8/7/2021


Summary for Reach 1R: Ex 18" ST on-site

Inflow Area = 1.700 ac, 49.53% Impervious, Inflow Depth = 2.93" for 100-Year event

Inflow = 8.79 cfs @ 11.97 hrs, Volume= 0.416 af

Outflow = 8.79 cfs @ 11.97 hrs, Volume= 0.416 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs

Printed 8/7/2021 Page 3

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchme Numbers
 0.000	0.566	0.000	0.378	0.000	0.944	>75% Grass cover, Good	3S
							4 S
							•
							5S
							,
							6S
0.000	0.000	0.000	0.109	0.000	0.109	Addition + Ex Roof	5S
0.000	0.000	0.000	0.084	0.000	0.084	Paved driveway & picnic shelter	4S
0.000	0.000	0.000	0.563	0.000	0.563	Paved parking	3S
							1
							5S
							,
							6S
0.000	0.566	0.000	1.134	0.000	1.700	TOTAL AREA	

Version 1.8 Last Updated: 11/09/2015

Design Point: 1

P= 1.00 inch

Manually enter P, Total Area and Impervious Cover.

Breakdown of Subcatchments										
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description				
1	1.23	0.69	56%	0.55	2,477	2029				
2	Se I			77.7						
3	and a service	71.13								
4	HOUSE BOX									
5	Toy I									
6	Maria Eku									
7		0.03								
8		en-out an over a depot test of								
9										
10				2						
Subtotal (1-30)	1.23	0.69	56%	0.55	2,477	Subtotal 1				
Total	1.23	0.69	56%	0.55	2,477	Initial WQv				

	Identify Runoff F	Reduction Techniqu	ies By Area	
Technique	Total Contributing Area Contributing Impervious		Notes	
	(Acre)	(Acre)		
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf	
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet	
Filter Strips	0.00	0.00		
Tree Planting	0.00	0.00	Up to 100 sf directly connected impervious area may be subtracted per tree	
Total	0.00	0.00		

Recalcu	late WQv after ap	plication of Area Re	eduction Tech	niques	
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft³)
"< <initial td="" wqv"<=""><td>1.23</td><td>0.69</td><td>56%</td><td>0.55</td><td>2,477</td></initial>	1.23	0.69	56%	0.55	2,477
Subtract Area	0.00	0.00			
WQv adjusted after Area Reductions	1.23	0.69	56%	0.55	2,477
Disconnection of Rooftops		0.00			
Adjusted WQv after Area Reduction and Rooftop Disconnect	1.23	0.69	56%	0.55	2,477
WQv reduced by Area Reduction techniques	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1				0

0.06 acft

Bioretention Worksheet

(For use on HSG C or D Soils with underdrains) Af=WQv*(df)/[k*(hf+df)(tf)]

Af WO:	Required Surface Area (ft2)		The hydraulic conductivity [ft/day], can be varied depending on the properties of the soil media. Some
WQv	Water Quality Volume (ft3)	i.	reported conductivity values are: Sand - 3.5 ft/day
df	Depth of the Soil Medium (feet)	K	(City of Austin 1988); Peat - 2.0 ft/day (Galli 1990);
hf	Average height of water above the planter bed		Leaf Compost - 8.7 ft/day (Claytor and Schueler,
tf	Volume Through the Filter Media (days)		1996); Bioretention Soil (0.5 ft/day (Claytor &

Design Point:	1						
	Enter	Site Data For	Drainage Are	a to be	Treated by	Practice	
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description
1	1.23	0.69	0.56	0.55	2477.48	1.00	18
Enter Impervious Area Reduced by Disconnection of Rooftops 0.00			56%	0.55	2,477	< <wqv ac<br="" after="">Disconnected R</wqv>	
Enter the portic routed to this p	on of the WQv th	nat is not redu	ced for all pra	ctices	0	ft ³	
			Soil Inform	ation			
Soil Group		D					
Soil Infiltration	Rate	0.50	in/hour	Design o	as an infiltra	tion bioretention	practice
Using Underdra	ins?	Yes	Okay				
		Calcula	ate the Minim	um Filte	er Area		
				1	/alue	Units	Notes
	WQv			2,477		ft ³	
Enter	Depth of Soil M	edia	df	2.5		ft	2.5-4 ft
Enter H	lydraulic Condu	ctivity	k	0.5		ft/day	
Enter Ave	erage Height of	Ponding	hf	0.25		ft	6 inches max.
E	nter Filter Time		tf	2		days	
Re	quired Filter Are	ea	Af		2252	ft²	
		Determ	ine Actual Bio	-Retent	ion Area		
Filter Width		23	ft				
Filter Length		100	ft				
Filter Area		2300	ft ²				
Actual Volume	Provided	2530	ft ³				
		Det	ermine Runot	f Reduc	tion		
Is the Bioretent another practic	tion contributing e?	g flow to	No	Selec	t Practice		
RRv		1,012		*			
RRv applied 1,012			ft ³	REPORT NAME OF STREET	40% of the ever is less.	storage provid	led or WQv
Volume Treate	d	1,465	ft ³	This is		of the WQv the	at is not reduced in
Volume Directe	ed	0	ft ³	This vo	olume is dir	ected another p	oractice
Sizing √		ОК		Check t	o be sure Ar	ea provided ≥ Af	

0.023 9f 70.01

WNYFCU Town of West Seneca

	Runoff Reduction Vo	lume a	nd Treated vo	olumes		
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated
			(acres)	(acres)	cf	cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00		
Sp	Tree Planting/Tree Pit	RR-3	0.00	0.00		
Rec	Disconnection of Rooftop Runoff	RR-4		0.00		
me	Vegetated Swale	RR-5	0.00	0.00	0	
nlo	Rain Garden	RR-6	0.00	0.00	0	
≥	Stormwater Planter	RR-7	0.00	0.00	0	
Are	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
. 	Porous Pavement	RR-9	0.00	0.00	0	
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0	
19/8.0	Infiltration Trench	l-1	0.00	0.00	0	0
APs city	Infiltration Basin	I-2	0.00	0.00	0	0
Standard SMPs w/RRv Capacity	Dry Well	I-3	0.00	0.00	0	0
	Underground Infiltration System	1-4				
	Bioretention & Infiltration Bioretention	F-5	1.23	0.69	1012	1465
	Dry swale	0-1	0.00	0.00	0	0
	Micropool Extended Detention (P-1)	P-1				
	Wet Pond (P-2)	P-2				
	Wet Extended Detention (P-3)	P-3				
	Multiple Pond system (P-4)	P-4				
S	Pocket Pond (p-5)	P-5				
MS	Surface Sand filter (F-1)	F-1				
2	Underground Sand filter (F-2)	F-2				
Standard SMPs	Perimeter Sand Filter (F-3)	F-3				
Sta	Organic Filter (F-4	F-4 W-1				A Material Control
	Shallow Wetland (W-1) Extended Detention Wetland (W-2	W-2	0.1816		-	
	Pond/Wetland System (W-3)	W-3	Reservation and the		-	
	Pocket Wetland (W-4)	W-4		Li gua provincia de provincia		
	Wet Swale (O-2)	0-2	PARTIE CONTROL OF STATE	West constraint and states		
	Totals by Area Reduction	-	0.00	0.00	0	
	Totals by Volume Reduction		0.00	0.00	0	
	Totals by Standard SMP w/RRV		1.23	0.69	1012	1465
	Totals by Standard SMP		0.00	0.00	7012	0
	Totals (Area + Volume + all SMPs)		1.23	0.69	1,012	1,465
	Impervious Cover V	okay			0.023	0.034
	Total Area √	okay			af	a f

Prepared by Hewlett-Packard Company
HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Time span=1.00-36.00 hrs, dt=0.01 hrs, 3501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 3S: New parking lot1 Runoff Area=0.666 ac 36.04% Impervious Runoff Depth=0.26" Flow Length=125' Slope=0.0150 '/' Tc=6.0 min CN=74 Runoff=0.25 cfs 0.014 af

Subcatchment 4S: Southwest yard not trib Runoff Area=0.462 ac 18.18% Impervious Runoff Depth=0.56"
Flow Length=100' Tc=6.0 min CN=83 Runoff=0.46 cfs 0.022 af

Subcatchment 5S: South yard additions

Runoff Area=0.422 ac 76.30% Impervious Runoff Depth=0.86"
Flow Length=190' Tc=6.0 min CN=89 Runoff=0.65 cfs 0.030 af

Subcatchment 6S: New parking lot2 Runoff Area=0.150 ac 73.33% Impervious Runoff Depth=0.81" Flow Length=125' Slope=0.0150 '/' Tc=6.0 min CN=88 Runoff=0.22 cfs 0.010 af

Total Runoff Area = 1.700 ac Runoff Volume = 0.077 af Average Runoff Depth = 0.54" 55.53% Pervious = 0.944 ac 44.47% Impervious = 0.756 ac

CPV: CN AVE = 84 TC=6MIN PV=0.077 af PRV <0.023>

Project:	wnyfcu	Project#:	21-28	Sheet #:	of			
Description:	Water Quality & RRv Calcs	Date:	8/1/2021	Orawn by:	avm			
Compute Stream	Channel Protection Volume, (Cp _v)							
For Stream Channel Protection, provide 24 hours of extended detention (T) for the one-year event								
	Avg CN =]	from HydroCAD				
	la = P =		inches					
	la/P =	0.18						
	Tc =	0.10	hours	from HydroCAD				
	qu =		csm/in	from NYS Erosion	and Sediment Control Fig. 10.16			
	Using NYS SWMDM Figure 8.5		7					
	qo/qi =		j					
	Vs/Vr =		7 4	5 U				
	Total Vr =	0.077	Jac ft	from HydroCAD				
	Volume for 24-hour Cpv =	0.050	ac-fl					
	Subtract Actual RRv:	0.023	ac-ft					
	New Cpv =	0.027	ac-ft	1172 cf				

Define the Average Release Rate 0.014 cfs

NOI QUESTIONS

#	NOI Question	Reported Value						
		cf	af					
28	Total Water Quality Volume (WQv) Required	2477	0.057					
30	Total RRV Provided	1012	0.023					
31	Is RRv Provided ≥WQv Required?							
32	Minimum RRv	476	0.011					
32a	Is RRv Provided ≥ Minimum RRv Required?	Y	Yes					
33a	Total WQv Treated	1465	0.034					
34	Sum of Volume Reduced & Treated	2477	0.057					
34	Sum of Volume Reduced and Treated	2477	0.057					
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	equired? Yes						

40.4%

		Apply Peak Flow Attenuation		AC-FT
36	Channel Protection		Сри	0.027
37	Overbank	PRÉ 3,89	Qp	0.027
37	Extreme Flood Control	CPE 8.79	Qf	0.074
and the second	Are Quantity Control requires	Yes	Plan Completed	

0.01 2.78 5.17 HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Printed 8/7/2021 Page 4

Summary for Subcatchment 3S: New parking lot1

Runoff = 0.25 cfs @ 12.00 hrs, Volume=

0.014 af, Depth= 0.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=1.80"

	Area ((ac) <u>C</u>	N Desc	cription		
	0.	240 9	8 Pave	ed parking,	HSG D	
	0.	426 6	31 >759	% Grass co	over, Good,	, HSG B
	0.666 74 Weighted Average				age	
	0.426 63.96% Pervious			6% Pervio	us Area	
0.240 36.04% Impervious Area				4% Imperv	ious Area	
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.9	10	0.0150	0.06		Sheet Flow, overland to bio-bed
						Grass: Dense n= 0.240 P2= 2.50"
	1.4	90	0.0150	1.06		Sheet Flow, overland to bio-bed
						Smooth surfaces n= 0.011 P2= 2.50"
	0.2	25	0.0150	2.49		Shallow Concentrated Flow, overland to bio-bed
_						Paved Kv= 20.3 fps
	4.5	125	Total I	ncreased t	o minimum	Tc = 6.0 min

125 Total, Increased to minimum Tc = 6.0 min

Summary for Subcatchment 4S: Southwest yard not trib to basin

Runoff = 0.46 cfs @ 11.98 hrs, Volume=

0.022 af, Depth= 0.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=1.80"

	Area ((ac) (ON De	scription				
	0.	378	80 >7	>75% Grass cover, Good, HSG D				
*	0.	084	98 Pa	Paved driveway & picnic shelter, HSG D				
	0.462 83 Weighted Average							
	0.378 81.82% Pervious Area							
	0.084 18.18% Impervious Area							
	Tc	Length	i Slope	e Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft) (ft/sec)_	(cfs)	· -		
	1.0	90	0.038	1.54		Sheet Flow, overland driveway		
						Smooth surfaces n= 0.011 P2= 2.50"		
	2.6	10	0.020	0.07		Sheet Flow, overland to rcvr		
						Grass: Dense n= 0.240 P2= 2.50"		
_	3.6	100) Total,	Increased	to minimum	1 Tc = 6.0 min		

Printed 8/7/2021 Page 5

Summary for Subcatchment 5S: South yard additions

Runoff =

0.65 cfs @ 11.97 hrs, Volume=

0.030 af, Depth= 0.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=1.80"

	Area	(ac) C	N Desc	cription		
	0.	213 9	8 Pave	ed parking,	HSG D	
	0.	100 6	31 >759	% Grass co	over, Good.	, HSG B
*	0.	109 9	8 Addi	tion + Ex F	Roof, HSG	D
	0.	422 8	39 Wei	hted Aver	age	<u> </u>
	0.	100		0% Pervio		
	Ō.	322	76.3	0% Imperv	ious Area	
	Τc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.9	10	0.0150	0.06		Sheet Flow, overland to rcvr
						Grass: Dense n= 0.240 P2= 2.50"
	0.6	30	0.0150	0.85		Sheet Flow, overland to rcvr
						Smooth surfaces n= 0.011 P2= 2.50"
	1.1	150	0.0020	2.35	2.89	
						15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.013 Corrugated PE, smooth interior
	4.6	190	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 6S: New parking lot2

Runoff =

0.22 cfs @ 11.98 hrs, Volume=

0.010 af, Depth= 0.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=1.80"

Area (ac) C	N Desc	cription		
0.1	0.110 98 Paved parking, HSG D				
0.0	040 €	31 >759	% Grass co	ver, Good,	, HSG B
0.	150 8	8 Weig	ghted Aver	age	
0.0	040		7% Pervio		
0.	110	73.3	3% Imperv	rious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.9	10	0.0150	0.06	(013)	Sheet Flow, overland to bio-bed
2.9	10	0.0130	0.00		Grass: Dense n= 0.240 P2= 2.50"
1.4	90	0.0150	1.06		Sheet Flow, overland to bio-bed Smooth surfaces n= 0.011 P2= 2.50"
0.2	25	0.0150	2.49		Shallow Concentrated Flow, overland to bio-bed Paved Kv= 20.3 fps
4.5	125	Total, I	ncreased t	o minimum	Tc = 6.0 min

Page 6

Summary for Reach 1R: Ex 18" ST on-site

1.700 ac, 44.47% Impervious, Inflow Depth > 0.54" for 1-Year event Inflow Area =

0.91 cfs @ 12.01 hrs, Volume= 0.077 af Inflow

0.91 cfs @ 12.01 hrs, Volume= 0.077 af, Atten= 0%, Lag= 0.0 min Outflow

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs

Summary for Pond 1P: Surface Basin

1.238 ac, 54.28% Impervious, Inflow Depth = 0.53" for 1-Year event Inflow Area =

0.90 cfs @ 11.98 hrs, Volume= 0.055 af Inflow

0.055 af, Atten= 40%, Lag= 4.4 min Outflow 0.54 cfs @ 12.05 hrs, Volume= =

Primary = 0.54 cfs @ 12.05 hrs, Volume= 0.055 af

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 620.98' @ 12.05 hrs Surf.Area= 0.023 ac Storage= 0.010 af

Flood Elev= 623.50' Surf.Area= 0.056 ac Storage= 0.107 af

Plug-Flow detention time= 39.3 min calculated for 0.055 af (100% of inflow)

Center-of-Mass det. time= 37.9 min (957.0 - 919.1)

Volume	Inve <u>rt</u>	Avail.Stora	ge Storage Description
#1	620.50'	0.107	af 12.00'W x 64.00'L x 3.00'H Surface Basin Z=3.0
Device	Routing	Invert	Outlet Devices
#1	Primary	620.50'	10.0" Round Culvert L= 60.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 620.50' / 620.20' S= 0.0050'/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=0.54 cfs @ 12.05 hrs HW=620.98' (Free Discharge) -1=Culvert (Barrel Controls 0.54 cfs @ 2.41 fps)

Summary for Pond 2P: Bio-planter

Inflow Area =	0.666 ac, 36.04% Impervious,	inflow Depth = 0.26" for 1-Year event
Inflow =	0.25 cfs @ 12.00 hrs, Volume	e= 0.014 af
Outflow =	0.25 cfs @ 12.00 hrs, Volume	= 0.014 af, Atten= 0%, Lag= 0.0 min

0.25 cfs @ 12.00 hrs, Volume= Primary = 0.014 af 0.00 cfs @ 12.00 hrs, Volume= 0.000 af Secondary =

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 623.80' @ 12.00 hrs Surf.Area= 0.036 ac Storage= 0.000 af

Plug-Flow detention time= 0.0 min calculated for 0.014 af (100% of inflow) Center-of-Mass det. time= 0.0 min (910.2 - 910.2)

HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Page 7

Volume	Invert	Avail.Storage	Storage Description
#1	623.80'	0.046 af	18.00'W x 88.00'L x 1.10'H Prismatoid Z=2.0
Device	Routing	Invert O	utlet Devices
#1	Primary	623.30' 12	2.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#2	Secondary	623.80' 0.	500 in/hr Exfiltration over Surface area
	•	C	onductivity to Groundwater Elevation = -5.00'

Primary OutFlow Max=13.77 cfs @ 12.00 hrs HW=623.80' (Free Discharge) 1=Sharp-Crested Rectangular Weir (Weir Controls 13.77 cfs @ 2.31 fps)

Secondary OutFlow Max=0.02 cfs @ 12.00 hrs HW=623.80' (Free Discharge) == Exfiltration (Controls 0.02 cfs)

Summary for Pond 3P: Bio-planter

Inflow Area =	0.150 ac, 73.33% Impervious, Inflow D	Depth = 0.81" for 1-Year event
Inflow =	0.22 cfs @ 11.98 hrs, Volume=	0.010 af
Outflow =	0.01 cfs @ 14.12 hrs, Volume=	0.010 af, Atten= 97%, Lag= 128.6 min
Primary =	0.00 cfs @ 1.00 hrs, Volume=	0.000 af
Secondary =	0.01 cfs @ 14.12 hrs, Volume=	0.010 af

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 624.41' @ 14.12 hrs Surf.Area= 0.014 ac Storage= 0.005 af

Plug-Flow detention time= 353.4 min calculated for 0.010 af (100% of inflow) Center-of-Mass det. time= 353.4 min (1,191.3 - 837.9)

Volume	Invert	Avail.Storage	e Storage Description
#1	624.00'	0.017 a	af 8.00'W x 63.00'L x 1.10'H Prismatoid Z=2.0
Device	Routing	Invert (Outlet Devices
#1	Primary	 L	10.0" Round Culvert to basin L= 80.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 621.75' / 621.58' S= 0.0021 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf
#2	Device 1		24.0" x 24.0" Horiz. Orifice/Grate
#3	Secondary	624.00'	0.500 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = -5.00'

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=624.00' (Free Discharge) -1=Culvert to basin (Passes 0.00 cfs of 2.54 cfs potential flow) 2=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.01 cfs @ 14.12 hrs HW=624.41' (Free Discharge) == 3=Exfiltration (Controls 0.01 cfs)

Printed 8/7/2021

Page 8

Summary for Subcatchment 3S: New parking lot1

Runoff = 1.

1.15 cfs @ 11.98 hrs, Volume=

0.054 af, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.11"

Ar <u>ea (</u>	(ac) C	N Desc	cription		
0.240 98 Paved parking, HSG D					
0.	426 6	31 >759	% Grass co	over, Good	, HSG B
0.	666 7	'4 Weig	ghted Aver	age	
0.	426	63.9	6% Pervio	us Area	
0.	240	36.0	4% Imperv	ious Area	
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.9	10	0.0150	0.06		Sheet Flow, overland to bio-bed
					Grass: Dense n= 0.240 P2= 2.50"
1.4	90	0.0150	1.06		Sheet Flow, overland to bio-bed
					Smooth surfaces n= 0.011 P2= 2.50"
0.2	25	0.0150	2.49		Shallow Concentrated Flow, overland to bio-bed
•					Paved Kv= 20.3 fps
4.5	125	Total, I	ncreased t	o minimum	1 Tc = 6.0 min

Summary for Subcatchment 4S: Southwest yard not trib to basin

Runoff =

1.27 cfs @ 11.97 hrs, Volume=

0.059 af, Depth= 1.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.11"

	Area ((ac) C	N Desc	ription		
					ver, Good,	
*	0.5	084 <u>9</u>	8 Pave	<u>ed drivewa</u>	y & picnic s	shelter, HSG D
_	0	462 8	3 Weig	hted Aver	age	
	0.	378	81.8	2% Pervio	us Area	
	0.	084	18.1	8% Imperv	rious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.0	90	0.0380	1.54		Sheet Flow, overland driveway
						Smooth surfaces n= 0.011 P2= 2.50"
	2.6	10	0.0200	0.07		Sheet Flow, overland to rcvr
						Grass: Dense n= 0.240 P2= 2.50"
_	2.6	100	Total I	naragead t	o minimum	Tc = 6.0 min

3.6 100 Total, Increased to minimum Tc = 6.0 min

Page 9

Summary for Subcatchment 5S: South yard additions

Runoff = 1.47 cfs @ 11.97 hrs, Volume=

0.070 af, Depth= 2.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.11"

	Area	(ac) C	N Desc	cription		12.07
	Q.	213 9	98 Pave	ed parking,	HSG D	
	0.	100 6	31 >759	% Grass co	over, Good.	, HSG B
*	Q.	109 9			Roof, HSG	
	0	422 8	39 Weig	ghted Aver	age	
		100		0% Pervio		
	-	322			ious Area	
	0.	UZZ	10.0	o /o mapers	71045 7 11 04	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.9	10	0.0150	0.06	, ,	Sheet Flow, overland to rcvr
		, ,	*.*.			Grass: Dense n= 0.240 P2= 2.50"
	0.6	30	0.0150	0.85		Sheet Flow, overland to rcvr
	0.0	•		0.00		Smooth surfaces n= 0.011 P2= 2.50"
	1.1	150	0.0020	2.35	2.89	
	•••		0.0020		2.00	15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.013 Corrugated PE, smooth interior
_	4.6	190	Total I	ncreased t	o minimum	1 Tc = 6.0 min

Summary for Subcatchment 6S: New parking lot2

Runoff = 0.50 cfs @ 11.97 hrs, Volume=

0.024 af, Depth= 1.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.11"

Area ((ac) C	N Des	cription _		
0.	110 9	8 Pav	ed parking,	HSG D	
0.4	040 <u>6</u>	1 >75	<u>% Grass co</u>	over, Good.	, HSG B
0.	150 8	8 Wei	ghted Aver	age	
0.	040	26.6	7% Pervio	us Area	
0.	110	73.3	3% Imperv	rious Area	
To	Longth	Slope	Velocity	Capacity	Description
Tc (min)	Length (feet)	Slope (ft/ft)	(ft/sec)	(cfs)	Description
				(010)	Sheet Flow, overland to bio-bed
2.9	10	0.0150	0.06		Grass: Dense n= 0.240 P2= 2.50"
1.4	90	0.0150	1.06		Sheet Flow, overland to bio-bed Smooth surfaces n= 0.011 P2= 2.50"
0.2	25	0.0150	2.49		Shallow Concentrated Flow, overland to bio-bed Paved Kv= 20.3 fps
4.5	125	Total,	Increased t	o minimum	1 Tc = 6.0 min

HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Printed 8/7/2021

Page 10

Summary for Reach 1R: Ex 18" ST on-site

Inflow Area = 1.700 ac, 44.47% Impervious, Inflow Depth > 1.46" for 10-Year event

2.78 cfs @ 12.00 hrs, Volume= Inflow 0.207 af

Outflow 2.78 cfs @ 12.00 hrs, Volume= 0.207 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs

Summary for Pond 1P: Surface Basin

Inflow Area = 1.238 ac, 54.28% Impervious, Inflow Depth = 1.44" for 10-Year event

2.96 cfs @ 11.99 hrs, Volume= Inflow 0.149 af

0.148 af, Atten= 45%, Lag= 7.4 min Outflow = 1.64 cfs @ 12.11 hrs, Volume=

1.64 cfs @ 12.11 hrs. Volume= 0.148 af Primary

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs / 2

Peak Elev= 621.63' @ 12.06 hrs Surf.Area= 0.031 ac Storage= 0.027 af Flood Elev= 623,50' Surf.Area= 0.056 ac Storage= 0.107 af

Plug-Flow detention time= 25.3 min calculated for 0.148 af (100% of inflow)

Center-of-Mass det. time= 21.6 min (894.0 - 872.5)

Volume	Invert	Avail.Storage	Storage Description
#1	620.50'	0.107 af	12.00'W x 64.00'L x 3.00'H Surface Basin Z=3.0
Device	Routing	Invert O	utlet Devices
#1	Primary	L=	0.0" Round Culvert = 60.0' CPP, projecting, no headwall, Ke= 0.900 let / Outlet Invert= 620.50' / 620.20' S= 0.0050 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=1.64 cfs @ 12.11 hrs HW=621.57' (Free Discharge) 1=Culvert (Barrel Controls 1.64 cfs @ 3.04 fps)

Summary for Pond 2P: Bio-planter

Inflow Area =	A 666 00	36 04% Impervious	Inflow Death =	റ മെ"	for 10-Veer event

Inflow =

Outflow =

1.15 cfs @ 11.98 hrs, Volume= 0.054 af 1.15 cfs @ 11.98 hrs, Volume= 0.054 af, Atten= 0%, Lag= 0.0 min 1.15 cfs @ 11.98 hrs, Volume= 0.054 af Primary = 0.00 cfs @ 11.98 hrs, Volume= 0.000 af Secondary =

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 623.80' @ 11.98 hrs Surf.Area= 0.036 ac Storage= 0.000 af

Plug-Flow detention time= 0.0 min calculated for 0.054 af (100% of inflow) Center-of-Mass det. time= 0.0 min (860.6 - 860.6)

Printed 8/7/2021 Page <u>11</u>

Volume	Invert	Avail.Storage	Storage Description
#1	623.80	0.046 af	18.00'W x 88.00'L x 1.10'H Prismatoid Z=2.0
Device	Routing	Invert O	utlet Devices
#1	Primary	623.30' 12	2.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#2	Secondary		500 in/hr Exfiltration over Surface area
	•	Co	onductivity to Groundwater Elevation = -5.00'

Primary OutFlow Max=13.79 cfs @ 11.98 hrs HW=623.80' (Free Discharge) T—1=Sharp-Crested Rectangular Weir (Weir Controls 13.79 cfs @ 2.31 fps)

Summary for Pond 3P: Bio-planter

Inflow Area =	0.150 ac, 73.33% Impervious, Inflow De	epth = 1.92" for 10-Year event
Inflow =	0.50 cfs @ 11.97 hrs, Volume=	0.024 af
Outflow =	0.44 cfs @ 12.01 hrs, Volume=	0.024 af, Atten= 13%, Lag= 2.4 min
Primary =	0.43 cfs @ 12.01 hrs, Volume=	0.009 af
Secondary =	0.01 cfs @ 12.01 hrs, Volume=	0.015 af

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 624.56' @ 12.01 hrs Surf.Area= 0.015 ac Storage= 0.008 af

Plug-Flow detention time= 271.9 min calculated for 0.024 af (100% of inflow) Center-of-Mass det. time= 272.0 min (1,085.2 - 813.2)

Volume	Invert	Avail.Stora	ge Storage Description
#1	624.00'	0.017	af 8.00'W x 63.00'L x 1.10'H Prismatoid Z=2.0
Device	Routing	Invert	Outlet Devices
#1	Primary	621.75'	10.0" Round Culvert to basin L= 80.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 621.75' / 621.58' S= 0.0021 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf
#2	Device 1	624.50'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Secondary	624.00'	0.500 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = -5.00'

Primary OutFlow Max=0.43 cfs @ 12.01 hrs HW=624.56' (Free Discharge) -1=Culvert to basin (Passes 0.43 cfs of 2.96 cfs potential flow) 2=Orifice/Grate (Weir Controls 0.43 cfs @ 0.83 fps)

Secondary OutFlow Max=0.01 cfs @ 12.01 hrs HW=624.56' (Free Discharge) 13=Exfiltration (Controls 0.01 cfs)

Summary for Subcatchment 3S: New parking lot1

Runoff 1.73 cfs @ 11.98 hrs, Volume= 0.081 af, Depth= 1.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=3.80"

Area	(ac) C	N Desc	cription		
0.	240 9	8 Pave	ed parking,	HSG D	
0.	426 6	31 >75°	% Grass co	ver, Good,	HSG B
0.	666 7	'4 Weig	ghted Aver	age	
0	426	63.9	6% Pervio	us Area	
0.	240	36.0	4% Imperv	ious Area	
			-		
Tç	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.9	10	0.0150	0.06		Sheet Flow, overland to bio-bed
					Grass: Dense n= 0.240 P2= 2.50"
1.4	90	0.0150	1.06		Sheet Flow, overland to bio-bed
					Smooth surfaces n= 0.011 P2= 2.50"
0.2	25	0.0150	2.49		Shallow Concentrated Flow, overland to bio-bed
					Paved Kv= 20.3 fps
4.5	125	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 4S: Southwest yard not trib to basin

Runoff 1.73 cfs @ 11.97 hrs, Volume= 0.081 af, Depth= 2.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=3.80"

	Area	(ac) C	N Des	cription		
	0.	378 8	30 >759	% Grass co	over, Good,	, HSG D
,	0.	084 9	8 Pave	ed drivewa	y & picnic s	shelter, HSG D
	0.	462 8	33 Wei	ghted Aver	age	
	0.	378	81.8	2% Pervio	us Area	
	0.	084	18.1	8% Imperv	ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.0	90	0.0380	1.54		Sheet Flow, overland driveway
						Smooth surfaces n= 0.011 P2= 2.50"
	2.6	10	0.0200	0.07		Sheet Flow, overland to rcvr
						Grass: Dense n= 0.240 P2= 2.50"
	3.6	100	Total 1	ncreased t	o minimum	Tc = 6.0 min

Printed 8/7/2021 Page 13

Summary for Subcatchment 5S: South yard additions

Runoff = 1.91 cfs @ 11.97 hrs, Volume=

0.093 af, Depth= 2.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=3.80"

	Area	(ac) C	N Des	cription		
	Q.	213 9	98 Pave	ed parking.	HSG D	
	0.	100	31 >759	% Ġrass c	over, Good.	HSG B
*	Q.	109			Roof, HSG	· ·
	0.	422	39 Wei	ghted Aver	age	
	0.	100	23.7	0% Pervio	us Area	
	0.	322	76.3	0% Imper	ious Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.9	10	0.0150	0.06		Sheet Flow, overland to rovr
						Grass: Dense n= 0.240 P2= 2.50"
	0.6	30	0.0150	0.85		Sheet Flow, overland to rovr
						Smooth surfaces n= 0.011 P2= 2.50"
	1.1	150	0.0020	2.35	2.89	Pipe Channel, pipe to basin
						15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
_						n= 0.013 Corrugated PE, smooth interior
	4.6	190	Total, I	ncreased t	o minimum	1 Tc = 6.0 min

Summary for Subcatchment 6S: New parking lot2

Runoff = 0.66 cfs @ 11.97 hrs, Volume=

0.032 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=3.80"

	Area (ac) C	N Des	cription		
	0.1	110 9	8 Pav	ed parking,	HSG D	
_	0.0	040 6	31 >75°	% Grass co	over, Good,	, HSG B
	0.1	150 8	88 Wei	ghted Aver	age	
	0.0	040	26.6	7% Pervio	us Area	
	0.	110	73.3	3% Imperv	ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.9	10	0.0150	0.06		Sheet Flow, overland to bio-bed
						Grass: Dense n= 0.240 P2= 2.50"
	1.4	90	0.0150	1.06		Sheet Flow, overland to bio-bed
						Smooth surfaces n= 0.011 P2= 2.50"
	0.2	25	0.0150	2.49		Shallow Concentrated Flow, overland to bio-bed
						Paved Kv= 20.3 fps
_	1.5	425	Total	Ingrapad t	a minimum	To = 6.0 min

4.5 125 Total, Increased to minimum Tc = 6.0 min

Printed 8/7/2021

Page 14

Summary for Reach 1R: Ex 18" ST on-site

Inflow Area = 1.700 ac, 44.47% Impervious, Inflow Depth > 2.02" for 25-Year event

Inflow = 3.59 cfs @ 11.99 hrs, Volume= 0.286 af

Outflow = 3.59 cfs @ 11.99 hrs, Volume= 0.286 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs

Summary for Pond 1P: Surface Basin

Inflow Area = 1.238 ac, 54.28% Impervious, Inflow Depth = 1.99" for 25-Year event

Inflow = 4.27 cfs @ 11.98 hrs, Volume= 0.205 af

Outflow = 2.14 cfs @ 12.06 hrs, Volume= 0.204 af, Atten= 50%, Lag= 5.3 min

Primary = 2.14 cfs @ 12.06 hrs, Volume= 0.204 af

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs / 2

Peak Elev= 622.06' @ 12.06 hrs Surf.Area= 0.036 ac Storage= 0.041 af

Flood Elev= 623.50' Surf.Area= 0.056 ac Storage= 0.107 af

Plug-Flow detention time= 22.7 min calculated for 0.204 af (100% of inflow)

Center-of-Mass det. time= 18.8 min (873.5 - 854.7)

Volume	Invert	Avail.Storag	ge Storage Description
#1	620.50'	0.107	af 12.00'W x 64.00'L x 3.00'H Surface Basin Z=3.0
Device	Routing	Invert	Outlet Devices
#1	Primary		10.0" Round Culvert L= 60.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 620.50' / 620.20' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=2.14 cfs @ 12.06 hrs HW=622.06' (Free Discharge)
1=Culvert (Barrel Controls 2.14 cfs @ 3.93 fps)

Summary for Pond 2P: Bio-planter

Inflow Area = 0.666 ac, 36.04% Impervious, Inflow Depth = 1.45" for 25-Year event

Inflow = 1.73 cfs @ 11.98 hrs, Volume= 0.081 af

Outflow = 1.73 cfs @ 11.98 hrs, Volume= 0.081 af, Atten= 0%, Lag= 0.0 min

Primary = 1.73 cfs @ 11.98 hrs, Volume= 0.080 af Secondary = 0.00 cfs @ 11.98 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 623.80' @ 11.98 hrs Surf.Area= 0.036 ac Storage= 0.000 af

Plug-Flow detention time= 0.0 min calculated for 0.081 af (100% of inflow)

Center-of-Mass det. time= 0.0 min (848.5 - 848.5)

HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Printed 8/7/2021 Page 15

Volume	Invert	Avail.Storage	Storage Description
#1	623.80'	0.046 af	18.00'W x 88.00'L x 1.10'H Prismatoid Z=2.0
Device	Routing	Invert Ou	utlet Devices
#1	Primary	623.30' 12	.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#2	Secondary	623.80′ 0.	500 in/hr Exfiltration over Surface area
		Co	onductivity to Groundwater Elevation = -5.00'

Primary OutFlow Max=13.81 cfs @ 11.98 hrs HW=623.80' (Free Discharge) 1=Sharp-Crested Rectangular Weir (Weir Controls 13.81 cfs @ 2.32 fps)

Secondary OutFlow Max=0.02 cfs @ 11.98 hrs HW=623.80' (Free Discharge) = 2=Exfiltration (Controls 0.02 cfs)

Summary for Pond 3P: Bio-planter

Inflow Area =	0.150 ac, 73.33% Impervious, Inflow	Depth = 2.54" for 25-Year event
Inflow =	0.66 cfs @ 11.97 hrs, Volume=	0.032 af
Outflow =	0.64 cfs @ 11.99 hrs, Volume=	0.032 af, Atten= 2%, Lag= 1.0 min
Primary =	0.64 cfs @ 11.99 hrs, Volume=	0.016 af
Secondary =	0.01 cfs @ 11.99 hrs, Volume=	0.016 af

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 624.58' @ 11.99 hrs Surf.Area= 0.016 ac Storage= 0.008 af

Plug-Flow detention time= 221.0 min calculated for 0.032 af (100% of inflow) Center-of-Mass det. time= 221.0 min (1,026.1 - 805.1)

Volume	Invert	Avail.Stora	ge Storage Description
#1	624.00'	0.017	af 8.00'W x 63.00'L x 1.10'H Prismatoid Z=2.0
Device	Routing	Invert	Outlet Devices
#1	Primary	621.75'	10.0" Round Culvert to basin
			L= 80.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 621.75' / 621.58' S= 0.0021 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf
#2	Device 1	624.50'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Secondary	624.00'	0.500 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = -5.00'

Primary OutFlow Max=0.63 cfs @ 11.99 hrs HW=624.58' (Free Discharge) -1=Culvert to basin (Passes 0.63 cfs of 2.97 cfs potential flow) 2=Orifice/Grate (Weir Controls 0.63 cfs @ 0.95 fps)

Secondary OutFlow Max=0.01 cfs @ 11.99 hrs HW=624.58' (Free Discharge) =3=Exfiltration (Controls 0.01 cfs)

Printed 8/7/2021 Page 16

Summary for Subcatchment 3S: New parking lot1

2.95 cfs @ 11.97 hrs, Volume= Runoff

0.137 af, Depth= 2.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.14"

	Area	(ac) C	N Desc	cription		
	0.	240 9		ed parking,		
	0.	426 E	31 >75°	% Grass co	over, Good,	, H\$G B
	0.	666 7	'4 Weig	ghted Aver	age	
	0.	426	63.9	6% Pervio	us Area	
	0.	240	36.0	4% Imperv	ious Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.9	10	0.0150	0.06		Sheet Flow, overland to bio-bed
						Grass: Dense n= 0.240 P2= 2.50"
	1.4	90	0.0150	1.06		Sheet Flow, overland to bio-bed
						Smooth surfaces n= 0.011 P2= 2.50"
	0.2	25	0.0150	2.49		Shallow Concentrated Flow, overland to bio-bed
						Paved Kv= 20.3 fps
	4.5	125	Total, I	ncreased t	o minimum	n Tc = 6.0 min

125 Total, Increased to minimum 1c = 6.0 min

Summary for Subcatchment 4S: Southwest yard not trib to basin

2.66 cfs @ 11.97 hrs, Volume= Runoff

0.127 af, Depth= 3.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.14"

	Area	(ac) C	N Desc	cription		
Ī	0.	378 8	30 >75°	% Grass co	over, Good,	, HSG D
*	0.	084 9	98 Pave	ed drivewa	y & picnic s	shelter, HSG D
_	0.	462 8	33 Wei	ghted Aver	age	
	0.	378	81.8	2% Pervio	us Area	
	0.	084	18.1	8% Imper	ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
-	1.0	90	0.0380	1.54		Sheet Flow, overland driveway
						Smooth surfaces n= 0.011 P2= 2.50"
	2.6	10	0.0200	0.07		Sheet Flow, overland to rcvr
_						Grass: Dense n= 0.240 P2= 2.50"
	36	100	Total I	increased t	to minimum	n Tc = 6.0 min

Printed 8/7/2021

Page 17

Summary for Subcatchment 5S: South yard additions

Runoff = 2.76 cfs @ 11.97 hrs, Volume=

0.137 af, Depth= 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.14"

	Area	(ac) C	N Desc	cription				
	0.	213 9	8 Pave	ed parking,	HSG D			
	0.	100 6	31 >759	% Grass co	over, Good	. HSG B		
*					Roof, HSG	•		
	0.422 89 Weighted Average							
		100		0% Pervio				
		322		0% Imper				
	0.	ULL	10.0	o to import	100371100			
	Tc	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•		
	2.9	10	0.0150	0.06	•	Sheet Flow, overland to rcvr		
						Grass: Dense n= 0.240 P2= 2.50"		
	0.6	30	0.0150	0.85		Sheet Flow, overland to rcvr		
						Smooth surfaces n= 0.011 P2= 2.50"		
	1.1	150	0.0020	2,35	2.89	Pipe Channel, pipe to basin		
						15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'		
						n= 0.013 Corrugated PE, smooth interior		
	4.6	190	Total, I	ncreased t	o minimum	Tc = 6.0 min		

Mai, increased to minimum 10 - 0.0 min

Summary for Subcatchment 6S: New parking lot2

Runoff = 0.96 cfs @ 11.97 hrs, Volume=

0.048 af, Depth= 3.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.14"

Are	ea (<u>a</u>	ac) C	N Desc	cription		
	0.1	10 9	8 Pave	ed parking,	HSG D	
	0.0	40 6	1 >759	% Grass co	ver, Good,	, HSG B
	0.1	50 8	8 Weig	ghted Aver	age	
	0.0	40	26.6	7% Pervio	us Area	
	0.1	10	73.3	3% Imperv	rious Area	
7	Гс	Length	Slope	Velocity	Capacity	Description
(mi		(feet)	(ft/ft)	(ft/sec)	(cfs)	
2	.9	10	0.0150	0.06		Sheet Flow, overland to bio-bed
						Grass: Dense n= 0.240 P2= 2.50"
1	.4	90	0.0150	1.06		Sheet Flow, overland to bio-bed
						Smooth surfaces n= 0.011 P2= 2.50"
0	.2	25	0.0150	2.49		Shallow Concentrated Flow, overland to bio-bed
						Paved Kv= 20.3 fps
4	.5	125	Total, I	ncreased t	o minimum	ı Tc = 6.0 min

Printed 8/7/2021 Page 18

Summary for Reach 1R: Ex 18" ST on-site

1.700 ac, 44.47% Impervious, Inflow Depth > 3.17" for 100-Year event Inflow Area =

5.17 cfs @ 11.99 hrs, Volume= Inflow 0.449 af

Outflow 5.17 cfs @ 11.99 hrs, Volume= 0.449 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs

Summary for Pond 1P: Surface Basin

Inflow Area = 1.238 ac, 54.28% Impervious, Inflow Depth > 3.12" for 100-Year event

6.65 cfs @ 11.97 hrs, Volume= Inflow = 0.322 af

Outflow 2.85 cfs @ 12.07 hrs, Volume= 0.321 af, Atten= 57%, Lag= 6.0 min

2.85 cfs @ 12.07 hrs, Volume= Primary 0.321 af

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 622.86' @ 12.07 hrs Surf.Area= 0.047 ac Storage= 0.074 af

Flood Elev= 623.50' Surf.Area= 0.056 ac Storage= 0.107 af

Plug-Flow detention time= 20.7 min calculated for 0.321 af (100% of inflow)

Center-of-Mass det. time= 17.4 min (849.6 - 832.1)

Volume	Invert	Avail.Storag	ge Storage Description
#1	620.50	0.107	af 12.00'W x 64.00'L x 3.00'H Surface Basin Z=3.0
Device	Routing	Invert	Outlet Devices
#1	Primary		10.0" Round Culvert L= 60.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 620.50' / 620.20' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=2.85 cfs @ 12.07 hrs HW=622.86' (Free Discharge) 1=Culvert (Barrel Controls 2.85 cfs @ 5.23 fps)

Summary for Pond 2P: Bio-planter

Inflow Area ≃	 0.666 ac, 36.04% Impervious, Inf 	low Depth = 2.48"	for 100-Year event
Inflow =	2.95 cfs @ 11.97 hrs, Volume=	0.137 af	
Outflow =	2.95 cfs @ 11.98 hrs, Volume=	0.137 af, Atte	en= 0%, Lag= 0.0 min
Primary =	2.95 cfs @ 11.98 hrs, Volume=	0.137 af	•
Secondary =	0.00 cfs @ 11.98 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 623.80' @ 11.98 hrs Surf, Area= 0.036 ac Storage= 0.000 af

Plug-Flow detention time= 0.0 min calculated for 0.137 af (100% of inflow) Center-of-Mass det. time= 0.0 min (832.9 - 832.9)

Prepared by Hewlett-Packard Company

HydroCAD® 10.00 s/n 07305 © 2013 HydroCAD Software Solutions LLC

Page 19

Printed 8/7/2021

Volume	Invert	Avail.Storage	Storage Description
#1	623.80'	0.046 af	18.00'W x 88.00'L x 1.10'H Prismatoid Z=2.0
Device	Routing	Invert Ou	utlet Devices
#1	Primary	623.30' 12	.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#2	Secondary	623.80' 0. 9	500 in/hr Exfiltration over Surface area
	•	Co	onductivity to Groundwater Elevation = -5.00'

Primary OutFlow Max=13.85 cfs @ 11.98 hrs HW=623.80' (Free Discharge) 1=Sharp-Crested Rectangular Weir (Weir Controls 13.85 cfs @ 2.32 fps)

Secondary OutFlow Max=0.02 cfs @ 11.98 hrs HW=623.80' (Free Discharge) == Exfiltration (Controls 0.02 cfs)

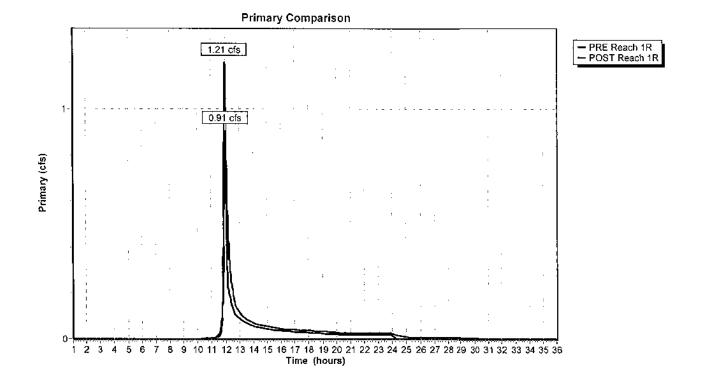
Summary for Pond 3P: Bio-planter

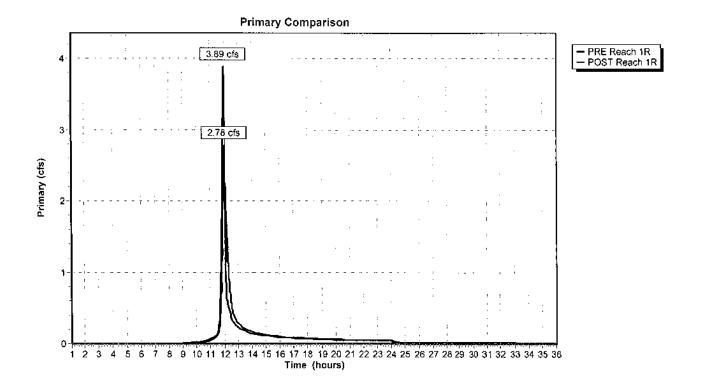
Inflow Area =	0.150 ac, 73.33% Impervious, Inflow	Depth = 3.80" for 100-Year event	t
Inflow =	0.96 cfs @ 11.97 hrs, Volume=	0.048 af	
Outflow =	0.95 cfs @ 11.98 hrs, Volume=	0.047 af, Atten= 2%, Lag= 0.8 m	iin
Primary =	0.94 cfs @ 11.98 hrs, Volume=	0.031 af	
Secondary =	0.01 cfs @ 11.98 hrs, Volume=	0.017 af	

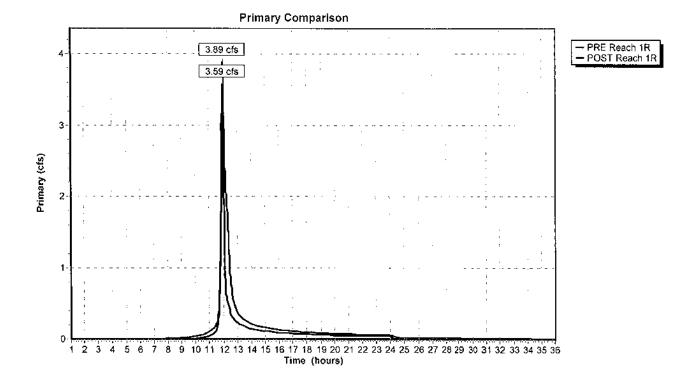
Routing by Stor-Ind method, Time Span= 1.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 624.61' @ 11.98 hrs Surf.Area= 0.016 ac Storage= 0.008 af

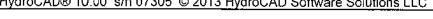
Plug-Flow detention time= 158.2 min calculated for 0.047 af (100% of inflow) Center-of-Mass det. time= 157.5 min (951.2 - 793.7)

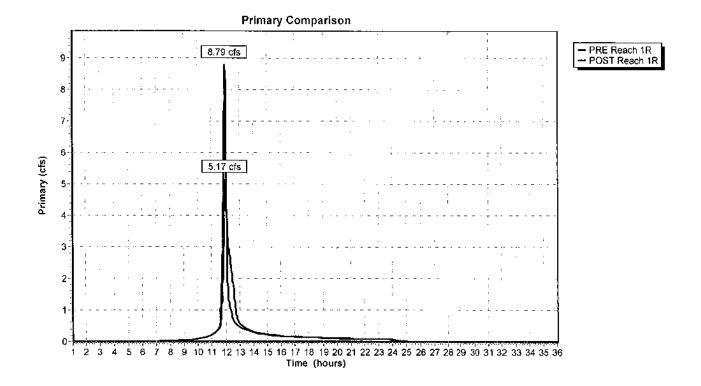
<u>Volume</u>	Invert	Avail.Stora	ge Storage Description
#1	624.00'	0.017	af 8.00'W x 63.00'L x 1.10'H Prismatoid Z=2.0
Device	Routing	Invert	Outlet Devices
#1	Primary	621.75'	10.0" Round Culvert to basin L= 80.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 621.75' / 621.58' S= 0.0021'/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf
#2	Device 1	624.50'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Secondary	624.00'	0.500 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = -5.00'


Primary OutFlow Max=0.94 cfs @ 11.98 hrs HW=624.61' (Free Discharge)
1=Culvert to basin (Passes 0.94 cfs of 2.99 cfs potential flow)
2=Orifice/Grate (Weir Controls 0.94 cfs @ 1.08 fps)


Secondary OutFlow Max=0.01 cfs @ 11.98 hrs HW=624.61' (Free Discharge) == 3=Exfiltration (Controls 0.01 cfs)


Printed 8/7/2021


Events for Pond 3P: Bio-planter


Event	Inflow	Outflow	Primary	Secondary	Elevation	Storage
	(cfs)	(cfs)	(cfs)	(cfs)	(feet)	(acre-feet)
1-Year	0.22	0.01	0.00	0.01	624.41	0.005
10-Year	0.50	0.44	0.43	0.01	624.56	0.008
25-Year	0.66	0.64	0.64	0.01	624.58	0.008
100-Үеаг	0.96	0.95	0.94	0.01	624.61	0.008

STORM SEWER COMPUTATIONS (10 yr)

Sewer Location Tributariane Tr	-	100		Y I I I I I	ADGA VO		ONLIG	CE COEFFICI	ANTC						TIME OF CONC.	INTENSITY	FLOW
GB-1 CB-2 0.18 0.18 0.92 0.17 0.17 90.00 1.20 0.92 2.89 2.89 CB-1 CB-2 0.18 0.18 0.92 0.17 0.17 90.00 1.20 0.92 2.89 2.89 YD-1 CB-2 0.14 0.92 0.17 0.17 90.00 1.20 0.92 2.23 2.23 CB-3 0.10 0.42 0.92 0.17 0.56 60.00 1.20 10.57 0.92 2.77 10.57 CB-3 0.10 0.42 0.92 0.07 0.05 2.00 1.20 1.080 0.92 2.77 10.57 CB-3 0.10 0.61 0.92 0.17 0.56 60.00 1.20 1.080 0.92 2.36 10.80 CB-3 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 </th <th>SE</th> <th>WER LOCAL</th> <th>S</th> <th>(JOSE)</th> <th>MAT AREA</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>PREV.</th> <th>T. of</th> <th>RUNOFF</th> <th></th> <th>٦</th> <th>-</th> <th>σ</th>	SE	WER LOCAL	S	(JOSE)	MAT AREA						PREV.	T. of	RUNOFF		٦	-	σ
CB-1 CB-2 0.16 0.16 0.92 0.17 0.17 90.00 1.20 0.92 2.89 2.89	rea	from	to to		SUM A	o	cA	SUM cA	LENGTH	SLOPE	Tc	conc. c	Tc		(min)	(in/hr)	(cts)
CB-1 CB-2 0.18 0.18 0.92 0.17 0.17 90.00 1.20 0.92 2.89 2.89 YD-1 CB-2 0.14 0.92 0.17 0.13 75.00 2.00 0.92 2.23 CB-3 0.10 0.42 0.92 0.13 75.00 2.00 0.92 2.73 1.57 CB-3 BASIN 0.19 0.64 0.92 0.17 0.56 60.00 1.20 10.67 0.92 2.07 10.57 CB-3 BASIN 0.19 0.61 0.92 0.17 0.56 60.00 1.20 10.67 0.92 2.07 10.57																ASSA SA AL CONTRA A SA ASSA A CONTRA A	
YO-1 CB-2 0.14 0.92 0.13 0.13 75.00 2.00 0.92 2.23 2.23 CB-2 CB-3 0.10 0.42 0.92 0.09 0.39 46.00 1.20 10.67 0.92 2.07 10.57 CB-3 BASIN 0.19 0.61 0.92 0.17 0.56 60.00 1.20 10.80 0.92 2.36 10.80		CB-1	CB-2	0.18	0.18	0.92	0.17	0.17	90,00	1.20	Andrew Andrews Street,	0.92	2.89	2.89	10.00	4.6	0.76
CB-2 CB-3 0.10 0.42 0.92 0.09 0.39 46.00 1.20 10.67 0.92 2.07 10.57 CB-3 BASIN 0.19 0.61 0.92 0.17 0.56 60.00 1.20 10.80 0.92 2.36 10.80 0.92 0.17 0.56 0.000 1.20 10.80 0.92 2.36 10.80 0.92 0.000 0.	•	XD-1	CB-2	0.14	0.14	0.92	0.13	0.13	75.00	2.00		0.92	2.23	2.23	10.00	4.6	0.59
CB-3 BASIN 0.19 0.61 0.92 0.17 0.56 60.00 1.20 10.80 0.92 2.36 10.80		CB-2	CB-3	010	0.42	0.92	0.09	0.39	46.00	1.20	10.57	0.92	2.07	10.57	10.57	4.5	1.74
	4	CB-3	BASIN	0.19	0.61	0.92	0.17	0.56	60.00	1.20	10.80	0.92	2.36	10.80	10.80	4,5	2.50
		And the second second		And the second s	PRINCIPAL CONTRACTOR C	-			Market Sales of Tree Section 6 to 6		A STATE OF THE PERSON AND PARTY OF THE PERSON AND PART	Daniel Market Line and Committee Com				and the same is not a suit deal of the same and the same	
		and the second second second		The state of the s	A contract to the second contract to					Vicinity of the second		and insulant a shift for fundament of				A Control of the Cont	
			Labour 2,01 years from the control of the field of the labour					And the state of t									
			100														
		-	Statement of the statem		The state of the s												
			And the second desired the second desired to		and the state of t		-	4000000	Commercial Control								

	LENGTH L (ft)	22	80	98	32			
	FLOW VELOCITY V (ft/sec)	2.98	1.98	2.56	2.84			
	peak	1.12	06.0	1.16	1,11			
	% capacity	0.82	0.34	1.00	0.80			
DESIGN	CAPACITY VELOCITY V (ff/sec)	2.66	2.20	2.20	2.56			
	CAPACITY Q (cfs)	0.93	1.73	1.73	3.14			
	DIAMETER D (in)	80	12	12	15			
	SLOPE S (%)	0.50	0.20	0.20	0.20			
	MANNING S n	0.012	0.012	0.012	0.012			

APPENDIX C

NOTICE OF INTENT

New York State Department of Environmental Conservation Division of Water

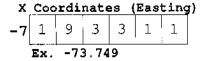
625 Broadway, 4th Floor Albany, New York 12233-3505

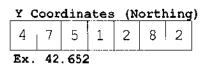
NYR					-
	{for	DEC	use	only)	

Stormwater Discharges Associated with Construction Activity Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-20-001 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANTRETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM


Owner/Operator Information
Owner/Operator (Company Name/Private Owner Name/Municipality Name) W N Y Fedderal Credit Union
Owner/Operator Contact Person Last Name (NOT CONSULTANT)
Owner/Operator Contact Person First Name
Owner/Operator Mailing Address 1937 Union RU
west Seneaa
State Pip [Ny] - []
Phone (Owner/Operator) 7 - 7 7 - 5 0 1 1 - 2 7 5 - 9 2 4 4
Email (Owner/Operator) MTBR + + 1; CWNYFCU. do m
FED TAX ID

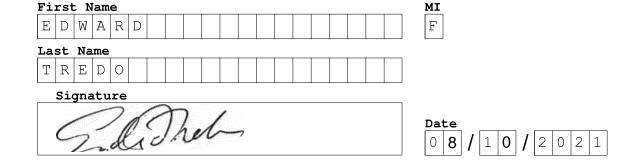

1	Project	Site I	nfori	natio	n -								
Project/Site Name													
WNY Federal Cr	e d i t	. U	n i	o n									
Street Address (NOT P.O. BOX)													
1937 Union Road	d L							!				i L	
Side of Street													
○ North ○ South ● East ○ West													
City/Town/Village (THAT ISSUES BU	JILDING 1	PERMIT	}										
West Seneca													
State Zip	County								_ D	EC J	<u>Re</u> gi	on	
N Y 1 4 2 2 4 -	Eri	e	:							Į	9		
Name of Nearest Cross Street													
Race Street								1				<u>i</u>	
Distance to Nearest Cross Street	(Feet)			Pr	oject	In	Rel	ati	on t	0 C	ross	Str	eet
					North	. 0	Sou	ţh	() E	ast	. 0	West	
Tax Map Numbers Section-Block-Parcel				Τá	ax Mag	o Nui	mber	s					
	2										<u> </u>		
	_					•							

1. Provide the Geographic Coordinates for the project site. To do this, go to the NYSDEC Stormwater Interactive Map on the DEC website at:

https://gisservices.dec.ny.gov/gis/stormwater/

Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located the centroid of your project site, go to the bottom right hand corner of the map for the X, Y coordinates. Enter the coordinates into the boxes below. For problems with the interactive map use the help function.

- 2. What is the nature of this construction project?
 - O New Construction
 - Redevelopment with increase in impervious area
 - O Redevelopment with no increase in impervious area


 Select the predominant land use for both p SELECT ONLY ONE CHOICE FOR EACH 	ere and post development conditions.
Pre-Development Existing Land Use	Post-Development Future Land Use
○ FOREST	O SINGLE FAMILY HOME Number of Lots
O PASTURE/OPEN LAND	OSINGLE FAMILY SUBDIVISION
○ CULTIVATED LAND	O TOWN HOME RESIDENTIAL
SINGLE FAMILY HOME	O MULTIFAMILY RESIDENTIAL
O SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL
O TOWN HOME RESIDENTIAL	○ INDUSTRIAL
O MULTIFAMILY RESIDENTIAL	• COMMERCIAL
O INSTITUTIONAL/SCHOOL	O MUNICIPAL
○ INDUSTRIAL	○ ROAD/HIGHWAY
○ COMMERCIAL	O RECREATIONAL/SPORTS FIELD
○ ROAD/HIGHWAY	O BIKE PATH/TRAIL
O RECREATIONAL/SPORTS FIELD	O LINEAR UTILITY (water, sewer, gas, etc.)
○ BIKE PATH/TRAIL	O PARKING LOT
O LINEAR UTILITY	OCLEARING/GRADING ONLY
O PARKING LOT	O DEMOLITION, NO REDEVELOPMENT
O OTHER	○ WELL DRILLING ACTIVITY *(Oil, Gas, etc.)
	OTHER
*Note: for gas well drilling, non-high volume	e hydraulic fractured wells only
4. In accordance with the larger common plan enter the total project site area; the tot existing impervious area to be disturbed (activities); and the future impervious are disturbed area. (Round to the nearest tent	al area to be disturbed; for redevelopment a constructed within the
Total Site Total Area To Exis	ting Impervious Area Within
Area Be Disturbed Area	To Be Disturbed Disturbed Area
[0.2
5. Do you plan to disturb more than 5 acres of	of soil at any one time? O Yes • No
6. Indicate the percentage of each Hydrologic	
A B 9	c
7. Is this a phased project?	() Yes 🔮 No
8. Enter the planned start and end dates of the disturbance activities.	ate End Date

9. Identify the nearest surface waterbody(ies) to which construction site runoff w discharge.	ill
Name	
Buffalo Creek	<u>'</u>
9a. Type of waterbody identified in Question 9?	
○ Wetland / State Jurisdiction On Site (Answer 9b)	
○ Wetland / State Jurisdiction Off Site	
○ Wetland / Federal Jurisdiction On Site (Answer 9b)	
○ Wetland / Federal Jurisdiction Off Site	
○ Stream / Creek On Site	
Stream / Creek Off Site	
O River On Site	
9b. How was the wetland identified Order Off Site	:d?
- Negatatory nap	
O Bellineacea of Comparents	
Other Type On Site O Delineated by Army Corps of I	ingineers
Other Type Off Site Other (identify)	
10. Has the surface waterbody(ies) in question 9 been identified as a OYes 303(d) segment in Appendix E of GP-0-20-001?	• No
11. Is this project located in one of the Watersheds identified in Appendix C of GP-0-20-001?	● No
12. Is the project located in one of the watershed areas associated with AA and AA-S classified waters? If no, skip question 13.	• No
13. Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey? If Yes, what is the acreage to be disturbed?	• No
14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent O Yes area?	• No

15.	Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)?	o O Unknown
16.	What is the name of the municipality/entity that owns the separate s system?	torm sewer
We	st Seneca	
17.	Does any runoff from the site enter a sewer classified Ores ON as a Combined Sewer?	o O Unknown
18.	Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law?	○ Yes • No
19.	Is this property owned by a state authority, state agency, federal government or local government?	○ Yes • No
20.	Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup Agreement, etc.)	○ Yes 🔮 No
21.	Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?	● Yes ○ No
22.	Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Quantity Control practices/techniques)? If No, skip questions 23 and 27-39.	● Yes ○ No
23.	Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS Stormwater Management Design Manual?	● Yes ○ No

24.	The	Stor	mwat	er I	Pollu	tio	n Pi	ceve	ent	ior	n P	lar	1 (5	SWP	PP)	w a	as)	pre	epa	rec	l b	у;							
● Professional Engineer (P.E.)																													
0	Soil	and W	ater	Co	nser	vati	on l	Dis	tr	ict	(8	WC	D)																
0	Regis	stered	Lan	dsc	ape i	Arch	ite	ct	(R	.L.	A)																		
0	Certi	fied	Prof	ess	iona	l in	Er	osi	on	an	d S	ed	ime	nt	Co	ntr	ol	(C	PES	C)									
0	Owner	r/Oper	ator																										
0	Other	<u>-</u>					T		·		1	т			···	-								_		_			
								i		<u> </u>										Ĺ									
SWPPP		—																	_T —									_	T
Tr	e d	э : E	n ! c	g i	n e	e	r s								ļ							!			<u> </u>				
Conta			ast,	Spa	ice,	Fir	st)			(- -	-т-			- _T	г	1 ··· T ·				— ··	·r	_						_	
Ма	rļi l		A	ı d	re	W						i	i					⅃.	. <u>.</u> <u>.</u>				: i			丄	! :	<u> </u>	
Maili			тт-		r	·r — —				i ''' ' 'T'	···		- 1		r	I- . : .				_	-	-T 				_		1	
7 5 _i	5	S e n	e	c a	S	t					•					:		_		!							Ш.	<u></u>	
City			Ι,			!	!		I			_								_	_	Т			!		— _[-T	$\overline{}$
Ви	f!f	a 1 0	!			<u>:</u> 		i	L	Li.				: • • • - · ·	. 4	<u> </u>								.		\perp	\perp		!
State					• ;																								
ИД	1	4 2 1	. 0	-	<u> </u>																								
Phone 7 1		8 7 6] [,	7 1	4 7	7							Fa	x	!	l	i]		Т	Π							
LL_:		0 / 0] - [/ ! <u></u>	4 /	_								_	1	- L				' L		<u> </u>	ڵٛٛ						
Email		i n c	, a -	-Tr	ed		e n		· i	n			rls	Τ.	С	0	m !		:	Т	1	-	T		т	i			\Box
	<u>a I </u>	1110	<u>, </u>	- -	: 	1 - 1	- 11	7		111	+		- 3	<u> </u>			!	<u>_</u>	<u>i</u>	+		<u> </u>			_	\dashv	+		<u> </u>
للنار		_]L	i									L	L	<u> </u>	<u></u>		L.	.,L								\perp		_	رِا
		arer																			,								_/

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-20-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

	Has a construction sequence schedule for t practices been prepared?	he planned management Yes () No										
26.	Select all of the erosion and sediment con employed on the project site:	trol practices that will be										
	Temporary Structural	Vegetative Measures										
	O Check Dams	O Brush Matting										
	O Construction Road Stabilization	O Dune Stabilization										
	O Dust Control	○ Grassed Waterway										
	○ Earth Dike	○ Mulching										
	○ Level Spreader	O Protecting Vegetation										
	O Perimeter Dike/Swale	O Recreation Area Improvement										
	○ Pipe Slope Drain	Seeding										
	O Portable Sediment Tank	○ Sodding										
	○ Rock Dam	○ Straw/Hay Bale Dike										
	Sediment Basin	Streambank Protection										
	○ Sediment Traps	○ Temporary Swale										
	Silt Fence	Topsoiling										
	Stabilized Construction Entrance	○ Vegetating Waterways										
	Storm Drain Inlet Protection	Permanent Structural										
	○ Straw/Hay Bale Dike											
	Temporary Access Waterway Crossing	Debris BasinDiversion										
	 Temporary Stormdrain Diversion 											
	○ Temporary Swale	○ Grade Stabilization Structure										
	○ Turbidity Curtain	○ Land Grading										
	○ Water bars	○ Lined Waterway (Rock)										
		O Paved Channel (Concrete)										
	Biotechnical	O Paved Flume										
	OBrush Matting	Retaining WallRiprap Slope ProtectionRock Outlet Protection										
	○ Wattling											
	·											
Ot	cher	Streambank Protection										
'	<u> </u>											

Post-construction Stormwater Management Practice (SMP) Requirements

Important: Completion of Questions 27-39 is not required

if response to Question 22 is No.

- 27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
 - O Preservation of Undisturbed Areas
 - O Preservation of Buffers
 - Reduction of Clearing and Grading
 - Locating Development in Less Sensitive Areas
 - O Roadway Reduction
 - O Sidewalk Reduction
 - O Driveway Reduction
 - O Cul-de-sac Reduction
 - O Building Footprint Reduction
 - O Parking Reduction
- 27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).
 - O All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
 - ♠ Compacted areas were considered as impervious cover when calculating the WQv Required, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
- 28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Total WQv Required

0 0 6 0 acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques (Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required (#28).

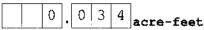
Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Mote: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

Table 1 - Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

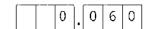
	Total Contributing		Contributing
RR Techniques (Area Reduction)	Area (acres)	Impervion	s Area (acres)
○ Conservation of Natural Areas (RR-1)		and/or	
Sheetflow to Riparian Buffers/Filters Strips (RR-2)		and/or	
○ Tree Planting/Tree Pit (RR-3)		and/or	•
O Disconnection of Rooftop Runoff (RR-4)		and/or	
RR Techniques (Volume Reduction)		<u> </u>	
○ Vegetated Swale (RR-5) ·····			•
○ Rain Garden (RR-6)			
○ Stormwater Planter (RR-7)			•
○ Rain Barrel/Cistern (RR-8)			_ •
O Porous Pavement (RR-9)			
○ Green Roof (RR-10)			•[
Standard SMPs with RRv Capacity			
○ Infiltration Trench (I-1) ······			_ • ; .
○ Infiltration Basin (I-2) ······	• • • • • • • • • • • • • • • • • • • •		
○ Dry Well (I-3) · · · · · · · · · · · · · · · · · · ·			
○ Underground Infiltration System (I-4)			•
■ Bioretention (F-5)			0 6 9
○ Dry Swale (0-1) ······	• • • • • • • • • • • • • • • • • • • •		
Standard SMPs			
O Micropool Extended Detention (P-1)	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
○ Wet Pond (P-2)			
○ Wet Extended Detention (P-3) ·····			•
○ Multiple Pond System (P-4) ······			
O Pocket Pond (P-5) ······			
○ Surface Sand Filter (F-1) · · · · · · · · ·			
○ Underground Sand Filter (F-2) ······		! ! !	_ - - -
O Perimeter Sand Filter (F-3) · · · · · · · · · · · · · · · · · · ·			
Organic Filter (F-4)			
○ Shallow Wetland (W-1)			
○ Extended Detention Wetland (W-2)		,	·
○ Pond/Wetland System (W-3)			
O Pocket Wetland (W-4)		!	
○ Wet Swale (O-2)		! ! !	

	Alternative SMPs (DO NOT INCLUDE PRACTICES BEING USED FOR PRETREATMENT ONLY)
Alternative SMP	Total Contributing Impervious Area(acres)
	Impervious Area (acres)
○ Hydrodynamic	•
○ Wet Vault	
O Media Filter	<u>,,</u>
Other	
Provide the name and manufacturer proprietary practice(s)) being use Name Manufacturer	
Note: Redevelopment projects which use questions 28, 29, 33 and WQv required and total WQv r	d 33a to provide SMPs used, total
	ided by the RR techniques (Area/Volume Reduction) and city identified in question 29.
31. Is the Total RRv provided (total WQv required (#28). If Yes, go to question 36. If No, go to question 32.	#30) greater than or equal to the
32. Provide the Minimum RRv req [Minimum RRv Required = (P)	quired based on HSG. (0.95)(Ai)/12, Ai=(S)(Aic)]
Minimum RRv Required 0 1 0 acre-fee	at
32a. Is the Total RRv provided (Minimum RRv Required (#32)?	(#30) greater than or equal to the ● Yes ○ No
specific site limitation 100% of WQv required (#2 specific site limitation 100% of the WQv required SWPPP. If No, sizing criteria has	vided in question #39 to summarize the as and justification for not reducing (28). A detailed evaluation of the as and justification for not reducing (428) must also be included in the not been met, so NOI can not be must modify design to meet sizing


33. Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv (=Total WQv Required in 28 - Total RRv Provided in 30).

Also, provide in Table 1 and 2 the total $\underline{impervious}$ area that contributes runoff to each practice selected.

Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.


33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question 29.

WQv Provided

Note: For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - RRv provided by the practice. (See Table 3.5 in Design Manual)

34. Provide the sum of the Total RRv provided (#30) and the WQv provided (#33a).

35. Is the sum of the RRv provided (#30) and the WQv provided (#33a) greater than or equal to the total WQv required (#28)? ▶ Yes ○ No

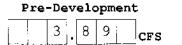
If Yes, go to question 36.

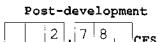
If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

36. Provide the total Channel Protection Storage Volume (CPv) required and provided or select waiver (36a), if applicable.

CPv Required

Ĺ	0	. 0	2	7	acre-feet
---	---	-----	---	---	-----------


CPv Provided


0 2 7 acre-feet

36a. The need to provide channel protection has been waived because:

- Site discharges directly to tidal waters or a fifth order or larger stream.
- O Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.
- 37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp)

Total Extreme Flood Control Criteria (Qf)

Pre-Development
| 8 | . | 7 | 9 | | CFS

	Pos	st-	de	eve	101	pment
		5		1	7	CFS

40.	Identify other DEC permits, existing and new, that are required for this project/facility.			
	○ Air Pollution Control			
	○ Coastal Erosion			
	○ Hazardous Waste			
	○ Long Island Wells			
	○ Mined Land Reclamation			
	○ Solid Waste			
	○ Navigable Waters Protection / Article 15			
	○ Water Quality Certificate			
	○ Dam Safety			
	O Water Supply			
	○ Freshwater Wetlands/Article 24			
	○ Tidal Wetlands			
	○ Wild, Scenic and Recreational Rivers			
	○ Stream Bed or Bank Protection / Article 15			
	○ Endangered or Threatened Species(Incidental Take Permit)			
	○ Individual SPDES			
	○ SPDES Multi-Sector GP N Y R			
	Other			
	• None			
41.	Does this project require a US Army Corps of Engineers Wetland Permit? If Yes, Indicate Size of Impact.			
42.	Is this project subject to the requirements of a regulated, traditional land use control MS4? • Yes O No (If No, skip question 43)			
43.	Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI?			
44.	If this NOI is being submitted for the purpose of continuing or transferring coverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned. $ N Y R $			

Print First Name

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penaltics for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

MI

Malrie	7
Print Last Name	
Betti	
Owner/Operator Signature	
Marie J. Bethi	Date 08 109 12021

New York State Department of Environmental Conservation Division of Water

625 Broadway, 4th Floor

Albany, New York 12233-3505
(NOTE: Submit completed form to address above)

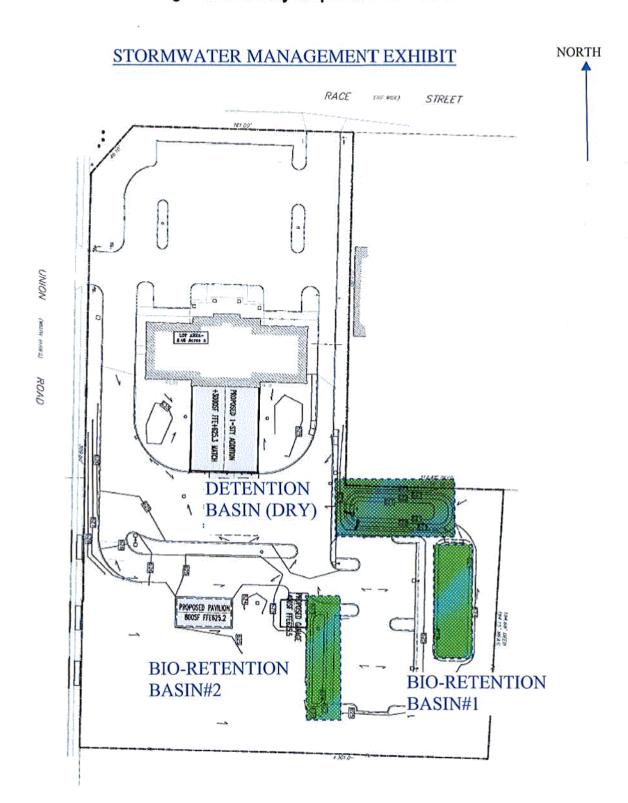
NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity

Please indicate your permit identification nu	mber: NYR
I. Owner or Operator Information	
Owner/Operator Name:	
2. Street Address:	
3. City/State/Zip:	-
4. Contact Person:	4a.Telephone:
4b. Contact Person E-Mail:	
II. Project Site Information	-
5. Project/Site Name:	
6. Street Address:	
7. City/Zip:	
8. County:	
III. Reason for Termination	
9a. □ All disturbed areas have achieved final stabilization completed (mo	
9b. Permit coverage has been transferred to new of permit identification number: NYR (Note: Permit coverage can not be terminal owner/operator obtains coverage under the general permits)	ated by owner identified in I.1. above until new
9c. □ Other (Explain on Page 2)	
IV. Final Site Information:	
10a. Did this construction activity require the develop stormwater management practices? □ yes □ no	
10b. Have all post-construction stormwater manager constructed? □ yes □ no (If no, explain	
10c. Identify the entity responsible for long-term oper	ration and maintenance of practice(s)?

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued 10d. Has the entity responsible for long-term operation and maintenance been given a copy of the operation and maintenance plan required by the general permit? □ yes 10e. Indicate the method used to ensure long-term operation and maintenance of the post-construction stormwater management practice(s): □ Post-construction stormwater management practice(s) and any right-of-way(s) needed to maintain practice(s) have been deeded to the municipality. □ Executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s). □ For post-construction stormwater management practices that are privately owned, a mechanism is in place that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan, such as a deed covenant in the owner or operator's deed of record. □ For post-construction stormwater management practices that are owned by a public or private institution (e.g. school, university or hospital), government agency or authority, or public utility; policy and procedures are in place that ensures operation and maintenance of the practice(s) in accordance with the operation and maintenance plan. 10f. Provide the total area of impervious surface (i.e. roof, pavement, concrete, gravel, etc.) constructed within the disturbance area? (acres) 11. Is this project subject to the requirements of a regulated, traditional land use control MS4? □ yes (If Yes, complete section VI - "MS4 Acceptance" statement V. Additional Information/Explanation: (Use this section to answer questions 9c. and 10b., if applicable) VI. MS4 Acceptance - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative (Note: Not required when 9b. is checked -transfer of coverage) I have determined that it is acceptable for the owner or operator of the construction project identified in question 5 to submit the Notice of Termination at this time. Printed Name: Title/Position: Date: Signature:

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued VII. Qualified Inspector Certification - Final Stabilization:

I hereby certify that all disturbed areas have achieved final stabilization as defined in the current version of the general permit, and that all temporary, structural erosion and sediment control measures have been removed. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.			
Printed Name:			
Title/Position:			
Signature:	Date:		
VIII. Qualified Inspector Certification - Post-construction Stormwa	ter Management Practice(s):		
I hereby certify that all post-construction stormwater management practices have been constructed in conformance with the SWPPP. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.			
Printed Name:			
Title/Position:			
Signature:	Date:		
IX. Owner or Operator Certification			
I hereby certify that this document was prepared by me or under my direction or supervision. My determination, based upon my inquiry of the person(s) who managed the construction activity, or those persons directly responsible for gathering the information, is that the information provided in this document is true, accurate and complete. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.			
Printed Name:			
Title/Position:			
Signature:	Date:		


(NYS DEC Notice of Termination - January 2015)

WNYFCU - 1937 UNION ROAD - WEST SENECA NY

STORMWATER CONTROL FACILITY MAINTENANCE AGREEMENT

Schedule A

Stormwater Management Facility Site Map Stormwater Management Facility Inspection Procedures Stormwater Management Facility Inspection Checklists

WNYFCU

No evidence of sediment buildup

Site Status: (T)WEST SENECA, NY

1937 UNION ROAD

Project:

Location:

Bioretention Operation, Maintenance and Management Inspection Checklist

		•
SATISFACTORY / UNSATISFACTORY	COMMENTS	

		UNSATISFACTORY

Maintenance Item	SATISFACTORY / UNSATISFACTORY	COMMENTS		
Sumps should not be more than 50% full of sediment				
No evidence of erosion at downstream toe of drop structure				
4. Dewatering (Monthly)				
Dewaters between storms				
No evidence of standing water				
5. Sediment Deposition (Annu	ial)			
Swale clean of sediments				
Sediments should not be > 20% of swale design depth				
6. Outlet/Overflow Spillway (Annual, After Major Storms)				
Good condition, no need for repair				
No evidence of erosion				
No evidence of any blockages				
7. Integrity of Filter Bed (Annual)				
Filter bed has not been blocked or filled inappropriately				

STORMWATER CONTROL FACILITY MAINTENANCE AGREEMENT

Stormwater Management Facility Inspection Procedures

Post Construction Operation & Maintenance

- 1. On a quarterly basis, perform the following:
 - a. Inspect catch basins, storm piping and detention basin for debris
 - b. Inspect catch basins and storm piping for accumulation of sediment
 - c. Remove and properly dispose of any collected debris from structures
 - d. Flush storm sewers with water, if necessary to remove accumulated sediment
 - e. Check all stone outfall structures for erosion and re-stone, if necessary to prevent further erosion
 - f. Inspect grassed/landscaped areas for unvegetated areas or areas with less than 80% healthy stand of grass and reseed and mulch as necessary. Water areas daily if reseeded through July and August.
- 2. Maintain all lawn areas by regular mowing, including the grassed slopes of the basins and grassed swale. Any eroded areas shall be re-graded, seeded and mulched immediately.
- 3. The dry detention basin shall be inspected annually.
- 4. not used
- 5. The proposed bioretention areas are to be maintained as required in the NYS SMDM and as a component of the property landscaping and shall be maintained on a regular basis. Mulching, weeding and plant replacement shall occur on an annual basis. Sediment must be removed when accumulation depth exceeds one inch. Any erosion of the bioretention berm must be repaired as soon as possible to prevent diversion around the bioretention area.

Schedule B

SAMPLE STORMWATER CONTROL FACILITY MAINTENANCE AGREEMENT

Whereas, the Municipality of West Seneca "Municipality") and the ("facility owner") want to enter into an agreement to provide for the long term maintenance and continuation of stormwater control measures approved by the Municipality for the below named project, and				
Whereas, the Municipality and the facility owner desire that the stormwater control measures be built in accordance with the approved project plans and thereafter be maintained, cleaned, repaired, replaced and continued in perpetuity in order to ensure optimum performance of the components. Therefore, the Municipality and the facility owner agree as follows:				
 This agreement binds the Municipality and the facility owner, its successors and assigns, to the maintenance provisions depicted in the approved project plans which are attached as Schedule A of this agreement. 				
The facility owner shall maintain, clear as necessary to ensure optimum perform include, but shall not be limited to, the soil absorption devices and retention por	mance of the measures to following: drainage ditch	design specification	ns. The stor	mwater control measures shall
3. The facility owner shall be responsible shall establish a means for the collection.		ises among parties		
4. The facility owner shall provide for the year period, to determine the condition Engineer licensed by the State of New days of the inspection, a written representation of the stormwater control of the stormwater control	periodic inspection of the and integrity of the mea York. The inspecting en- ort of the findings inclu-	stormwater control sures. Such inspec	tion shall be and submit	e performed by a Professional to the Municipality within 30
5. The facility owner shall not authorize stormwater control measures except in	, undertake or permit alto accordance with written a	eration, abandonme	nt, modifica	ation or discontinuation of the
6. The facility owner shall undertake nece Municipality or in accordance with the			ter control i	
7. The facility owner shall provide to maintenance and continuation of the ste	the Municipality within ormwater control measure	30 days of the days in the form of a B	ate of this ond, letter o	agreement, a security for the foredit or escrow account.
This agreement shall be recorded in the common property and shall be included.		icik, County of	ERIE ved pursuan	_together with the deed for the
 If ever the Municipality determines the in accordance with the project plane inspecting engineer, the Municipality continuation or maintenance of the store 	or has failed to undertak is authorized to underta	e corrective action ke such steps as r	specified leasonably r	by the Municipality or by the necessary for the preservation
10. This agreement is effective	and the state of 	50 90 97 55F		
	स्ता । अस्तु सुरक्षका	er. Amerikanski spj.	24	A Residence of the second of t
· · · · · · · · · · · · · · · · · · ·	,	(4)7 84		e grande en som en en
*	医二次性 电二次	r kulas r Augs		Alle de deservir de la
				J(I)
				≆ v.
	Salahan Kerebera	20022222222		

TOWNSHIP

OWNER/OPERATOR

APPENDIX D

.

Project: Addition : Summary Report Date:	to WNYFCU West Seneca; SF By:	PDES Permit #NYR
CONSTRUCTION	DURATION INSPECTIONS	Page 2 of
Maintaining Water	·Quality	
[] [] [] Is there re [] [] [] All distur	esidue from oil and floating substanc rbance is within the limits of the appi	stantial visible contrast to natural conditions? es, visible oil film, or globules or grease? roved plans. and been impacted by silt from project?
Housekeeping		
[] [] Are facil working [] [] Is constru	uction site litter and debris appropria	plementation of erosion and sediment control in
[] [] [] Installed [] [] [] Is fill cont [] [] [] Rock on	m diameter pipes necessary to span of I non-woven geotextile fabric beneath moosed of aggregate (no earth or so	approaches.
Runoff Control Pr	ractices	
[] [] [] Clean w	•	ig discharged to a silt-trapping device.
3. Interceptor Dike Yes No NA [] [] [] Installe [] [] [] Stabiliz	acted on undisturbed soil, not on fill, neets out of level spreader without ero	2H:1V or flatter. ch with no erosion occurring.

Runoff Control Practices (continued) 4. Stone Check Dam Yes No NA [] [] Is channel stable? (flow is not eroding soil underneath or around the structure). [] [] Check is in good condition (rocks in place and no permanent pools behind the structure). [] [] Has accumulated sediment been removed?. 5. Rock Outlet Protection Yes No NA [] [] Installed per plan. [] [] Installed concurrently with pipe installation. Soil Stabilization 1. Topsoil and Spoil Stockpiles Yes No NA [] [] Stockpiles are stabilized with vegetation and/or mulch. [] [] Sediment control is installed at the toe of the slope. 2. Revegetation Yes No NA [] [] Temporary seedings and mulch have been applied to idle areas. [] [] 4 inches minimum of topsoil has been applied under permanent seedings **Sediment Control Practices** 1. Stabilized Construction Entrance Yes No NA [] [] Stone is clean enough to effectively remove mud from vehicles. [] [] Installed per standards and specifications? [] [] Does all traffic use the stabilized entrance to enter and leave site? [] [] Is adequate drainage provided to prevent ponding at entrance? 2. Silt Fence Yes No NA [] [] Installed on Contour, 10 feet from toe of slope (not across conveyance channels). [] [] Joints constructed by wrapping the two ends together for continuous support. [] [] Fabric buried 6 inches minimum. [] [] Posts are stable, fabric is tight and without rips or frayed areas. Sediment accumulation is ___% of design capacity.

CONSTRUCTION DURATION INSPECTIONS

Page 3 of _____

Sediment Control Practices (continued)

3. Storm Drain Inlet Protection (Use for Stone & Block; Filter Fabric; Curb; or, Excavated practices) Yes No NA
 [] [] [] Installed concrete blocks lengthwise so open ends face outward, not upward. [] [] Placed wire screen between No. 3 crushed stone and concrete blocks. [] [] Drainage area is lacre or less. [] [] Excavated area is 900 cubic feet. [] [] Excavated side slopes should be 2:1. [] [] [] 2" x 4" frame is constructed and structurally sound. [] [] [] Posts 3-foot maximum spacing between posts. [] [] [] Fabric is embedded 1 to 1.5 feet below ground and secured to frame/posts with staples at max 8-inch spacing. [] [] Posts are stable, fabric is tight and without rips or frayed areas. Sediment accumulation% of design capacity.
4. Temporary Sediment Trap Yes No NA [] [] [] Outlet structure is constructed per the approved plan or drawing. [] [] [] Geotextile fabric has been placed beneath rock fill. Sediment accumulation is% of design capacity.
5. Temporary Sediment Basin Yes No NA [] [] Basin and outlet structure constructed per the approved plan. [] [] Basin side slopes are stabilized with seed/mulch. [] [] Drainage structure flushed and basin surface restored upon removal of sediment basin facility. Sediment accumulation is% of design capacity.
Note: Not all erosion and sediment control practices are included in this listing. Add additional pages to this list as required by site specific design. Construction inspection checklists for post-development stormwater management practices car be found in Appendix F of the New York Stormwater Management Design Manual.

CONSTRUCTION DURATION INSPECTIONS

b. Modifications to the SWPPP (To be completed as described below)

The Operator shall amend the SWPPP whenever:

- 1. There is a significant change in design, construction, operation, or maintenance which may have a significant effect on the potential for the discharge of pollutants to the waters of the United States and which has not otherwise been addressed in the SWPPP; or
- 2. The SWPPP proves to be ineffective in:
 - a. Eliminating or significantly minimizing pollutants from sources identified in the SWPPP and as required by this permit; or
 - b. Achieving the general objectives of controlling pollutants in stormwater discharges from permitted construction activity; and
- 3. Additionally, the SWPPP shall be amended to identify any new contractor or subcontractor that will implement any measure of the SWPPP.

Modification & Reason:		

Z.

Bioretention Stormwater Management Practices Level 1 Inspection Checklist SMP ID# **SMP Owner** □ Private ☐ Public **SMP Location** (Address; Latitude & Longitude) Latitude Longitude Party Responsible for System Type Type of Site Maintenance ☐ Commercial ☐ Same as SMP Owner Above Ground ☐ Seasonal ☐ Below Ground ☐ Industrial ☐ Other ☐ Continuous Use ☐ Residential ☐ Other ☐ State Inspection Time Inspection Date Inspector Date of Last Inspection **BR Drainage Area** Look for areas that are uphill from the Bioretention cell. **Problem (Check if Present)** Follow-Up Actions Seed and mulch areas of bare soil to establish vegetation. Fill in erosion areas with soil, compact, and seed and straw to establish vegetation. of the ground

Other:

If a rill or small channel is forming, try to redirect water

flowing to this area by creating a small berm or adding

topsoil to areas that are heavily compacted.

(rills washing out

the dirt)

BR Drainage Area			
Look for areas that are uphill from the Bioretention cell.			
Problem (Check if Present)	Follow-Up Actions		
	Kick-Out to Level 2 Inspection: Large areas of soil have been eroded, or larger channels are forming. May require rerouting of flow paths.		
Piles of grass clippings, mulch, dirt, salt, or other materials	Remove or cover piles of grass clippings, mulch, dirt, etc. Other:		
Open containers of oil, grease, paint, or other substances	Cover or properly dispose of materials; consult your local solid waste authority for guidance on materials that may be toxic or hazardous. Other:		

BR Inlets

Stand in the Bioretention cell itself and look for all the places where water flows in. Often there will be multiple points of inflow to the practice

practice.				
Problem (Check if Present)	Follow-Up Actions			
Inlets collect grit and debris or grass/weeds. Some water may not be getting into the Bioretention cell. The objective is to have a clear pathway for water to flow into the cell.	Use a flat shovel to remove grit and debris (especially at curb inlets or openings). Parking lots generate fine grit that will accumulate at these spots. Pull out clumps of growing grass or weeds and scoop out the soil or grit that the plants are growing in. Remove any grass clippings, leaves, sticks, and other debris that is collecting at inlets. For pipes and ditches, remove sediment and debris that is partially blocking the pipe or ditch opening where it enters the Bioretention cell. Dispose of all material properly where it will not re-enter the Bioretention cell. Other: Kick-Out to Level 2 Inspection: Inlets are blocked to the extent that most of the water does not seem to be entering the Bioretention cell.			
	For small areas of erosion, smooth out the eroded part and apply rock or stone (e.g., river cobble) to prevent further erosion. Usually, filter fabric is placed under the rock or stone. In some cases, reseeding and applying erosion-control matting can be used to prevent further erosion. Some of these materials may be available at a garden center, but it may be best to consult a landscape contractor. Other:			
Some or all of the inlets are eroding so that rills, gullies, and other erosion is present, or there is bare dirt that is washing into the Bioretention cell.	Kick-Out to Level 2 Inspection: Erosion is occurring at most of the inlets, and it looks like there is too much water that is concentrating at these points. The inlet design may have to be modified.			

BR Ponding Area Examine the entire Bioretention surface and side slopes Problem (Check if Present) Follow-Up Actions Add new mulch to a total depth (including any existing mulch that is left) of 2 to 3 inches. The mulch should be shredded hardwood mulch that is less likely to float away during rainstorms. Avoid adding too much mulch so that inlets are obstructed or certain areas. become higher than the rest of the Bioretention surface. Other: Mulch (if used) needs to be replaced or replenished. The mulch layer had decomposed or is less than 1-inch thick. Use a shovel to scoop out minor areas of sediment or grit, especially in the spring after winter sanding materials may wash in and accumulate. Dispose of the material where it cannot re-enter the Bioretention cell . If removing the material creates a hole or low area, fill with soil mix that matches original mix and cover with mulch so that the Bioretention surface area is as flat as possible. Remove trash, vegetative debris, and other undesirable materials. Other: Kick-Out to Level 2 Inspection: Sediment has accumulated more than 2inches deep and covers 25% or more of the Bioretention surface. Kick-Out to Level 2 Inspection: The Bioretention cell is too densely vegetated to assess sediment accumulation or ponding; see BR-4, Vegetation. Minor areas of sediment, grit, trash, or other debris are accumulating on the bottom.

BR Ponding Area Examine the entire Bioretention surface and side slopes Problem (Check if Present) Follow-Up Actions Try filling the eroded areas with clean topsoil or sand, and cover with mulch. If the problem recurs, you may have to use stone (e.g., river cobble) to fill in problem areas. If the erosion is on a side slope, fill with clay that can be compacted and seed and mulch the area. Other: There is erosion in the bottom or on the side slopes. Water seems to be carving out rills as it flows across the Bioretention surface or on the slopes, or sinkholes are forming in certain Kick-Out to Level 2 Inspection: The problem persists or the erosion is more areas. than 3-inches deep and seems to be an issue with how water enters and Source: Stormwater Maintenance, LLC. moves through the Bioretention cell. Kick-Out to Level 2 Inspection: The problem does not seem to be caused by flowing water, but a collapse or sinking of the surface (e.g., "sinkhole") due to some underground problem. If the problem is minor (just small, isolated areas are not covered with water), try raking the surface OR adding mulch to low spots to create a more level surface. You may need to remove and replace plantings in order to properly even off the surface. Check the surface with a string and bubble level to get the surface as flat as possible. Other: Kick-Out to Level 2 Inspection: Ponding water is isolated to less than half The bottom of the Bioretention cell is not flat, of the Bioretention surface area, and there seem to be elevation and the water pools at one end, along an differences of more than a couple of inches across the surface. edge, or in certain pockets. The whole bottom is not uniformly covered with water. See design plan to verify that bioretention surface is intended to be flat. Check during or immediately after a rainstorm.

BR Ponding Area			
Examine the entire Bioretention surface and side slopes			
Problem (Check if Present)	Follow-Up	Actions	
Water stands on the surface more than 72 hours after a rainstorm and /or wetland-type vegetation is present. The Bioretention cell does not appear to be draining properly.		Out to Level 2 Inspection: This is generally a serious problem, and it e necessary to activate a Level 2 Inspection.	
	BR V	egetation	
Examine all Bioretention cell vegetation.			
Problem (Check if Present)		Follow-Up Actions	
Vegetation requires regular maintenance	illing	If you can identify which plants are weeds or not intended to be part of the planting plan, eliminate these, preferably by hand pulling. If weeds are widespread, check with the local stormwater authority and/or Extension Office about proper use of herbicides for areas connected with the flow of water. Even vegetation that is intended to be present can become large, overgrown, and/or crowd out surrounding plants. Prune and thin accordingly. If weeds or invasive plants have overtaken the whole Bioretention cell, bush-hog the entire area before seedheads form in the spring. It will be necessary to remove the root mat manually or with appropriate herbicides, as noted above. Re-plant with species that are aesthetically pleasing and seem to be doing well in the Bioretention cell. Other: Kick-Out to Level 2 Inspection: You are unsure of the original planting design, or the vegetation maintenance task is beyond	
Vegetation requires regular maintenance—pu weeds, removing dead and diseased plants, r mulch around plants, adding plants to fill in ar are not well vegetated, etc.	eplacing	planting design, or the vegetation maintenance task is beyond your capabilities of time, expertise, or resources. If you are unsure of the health of the vegetation (e.g. salt damage, invasives, which plants are undesirable) or the appropriate season to conduct vegetation management, consult a landscape professional before undertaking any cutting, pruning, mowing, or brush hogging.	

BR Vegetation			
Examine all Bioretention cell vegetation.			
Problem (Check if Present)	Follow-Up Actions		
	The original plants are likely not suited for the actual conditions within the Bioretention cell. If you are knowledgeable about plants, select and plant more appropriate vegetation (preferably native plants) so that almost the entire surface area will be covered by the end of the second growing season. Other:		
☐ Vegetation is too thin, is not healthy, and the many spots that are not well vegetated.	Kick-Out to Level 2 Inspection: For all but small practices (e.g., rain gardens), this task will likely require a landscape design professional or horticulturalist.		
	BR Outlets		
Examine outlets that release water out of the Bior	etention cell,		
Problem (Check if Present)	Follow-Up Actions		
☐ Erosion at outlet	Add stone to reduce the impact from the water flowing out of the outlet pipe or weir during storms. Other:		
	Kick-Out to Level 2 Inspection: Rills have formed and erosion problem becomes more severe.		
	Remove the debris and dispose of it where it cannot re-enter the Bioretention cell . Other:		
☐ Outlet obstructed with mulch, sediment,	☐ Kick-Out to Level 2 Inspection: Outlet is completely clogged or obstructed; there is too much material to remove by hand or with simple hand tools.		
debris, trash, etc.			

Additional Notes:			
Inspector:	Date:		
Complete the following if follow-up/corrective actions were identified during this inspection:			
Certified Completion of Follow-Up Actions:			
"I hereby certify that the follow-up/corrective actions ider performed on(DATE) have been completed maintenance deficiencies have been adequately correct	ted and any required		
Inspector/Operator:	Date:		

NOTICE TO REDUCE FREQUENCY OF SPDES SITE INSPECTIONS SPDES GENERAL PERMIT GP-0-20-001

In accordance with Part IV.C.2.c of the SPDES General Permit for Stormwater Discharges from Construction Activity, GP-0-20-002, the Owner/Operator							
A Qualified Inspector will conduct a site in this period. The standard site inspection f commence.	spection at least once every 30 calendar days during frequency will resume when construction activities re-						
SPDES Permit Identification #NYR	<u>.</u>						
Contract No.:	PIN:						
Description:							
Town, Village, City:							
County:							
Reason for temporary suspension of worl Winter Shutdown Other							
Approximate date work will be suspende	ed:						
Approximate date work will resume:							
Signature							
Name:							
Title:							
Phone:							
E-Mail:							
Date Submitted to NYSDEC:							

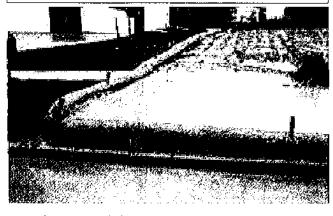
STANDARD AND SPECIFICATIONS FOR COMPOST FILTER SOCK

Definition & Scope

A temporary sediment control practice composed of a degradable geotextile mesh tube filled with compost filter media to filter sediment and other pollutants associated with construction activity to prevent their migration offsite.

Condition Where Practice Applies

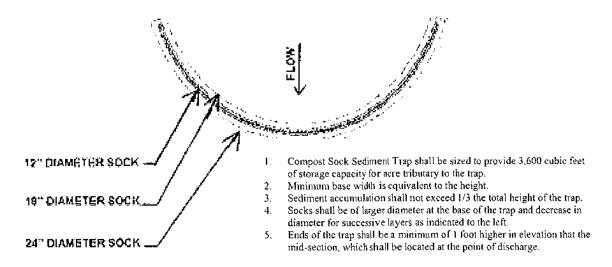
Compost filter socks can be used in many construction site applications where erosion will occur in the form of sheet erosion and there is no concentration of water flowing to the sock. In areas with steep slopes and/or rocky terrain, soil conditions must be such that good continuous contact between the sock and the soil is maintained throughout its length. For use on impervious surfaces such as road pavement or parking areas, proper anchorage must be provided to prevent shifting of the sock or separation of the contact between the sock and the pavement. Compost filter socks are utilized both at the site perimeter as well as within the construction areas. These socks may be filled after placement by blowing compost into the tube pneumatically, or filled at a staging location and moved into its designed location.


Design Criteria

- Compost filter socks will be placed on the contour with both terminal ends of the sock extended 8 feet upslope at a 45 degree angle to prevent bypass flow.
- 2. Diameters designed for use shall be 12" 32" except

- that 8" diameter socks may be used for residential lots to control areas less than 0.25 acres.
- 3. The flat dimension of the sock shall be at least 1.5 times the nominal diameter.
- 4. The Maximum Slope Length (in feet) above a compost filter sock shall not exceed the following limits:

Dia. (in.)	Slope %							
	2	5	10	20	25	33	50	
8	225*	200	100	50	20	_	_	
12	250	225	125	65	50	40	25	
18	275	250	150	70	55	45	30	
24	350	275	200	130	100	60	35	
32	450	325	275	150	120	75	50	


* Length in feet

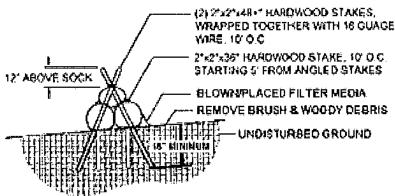
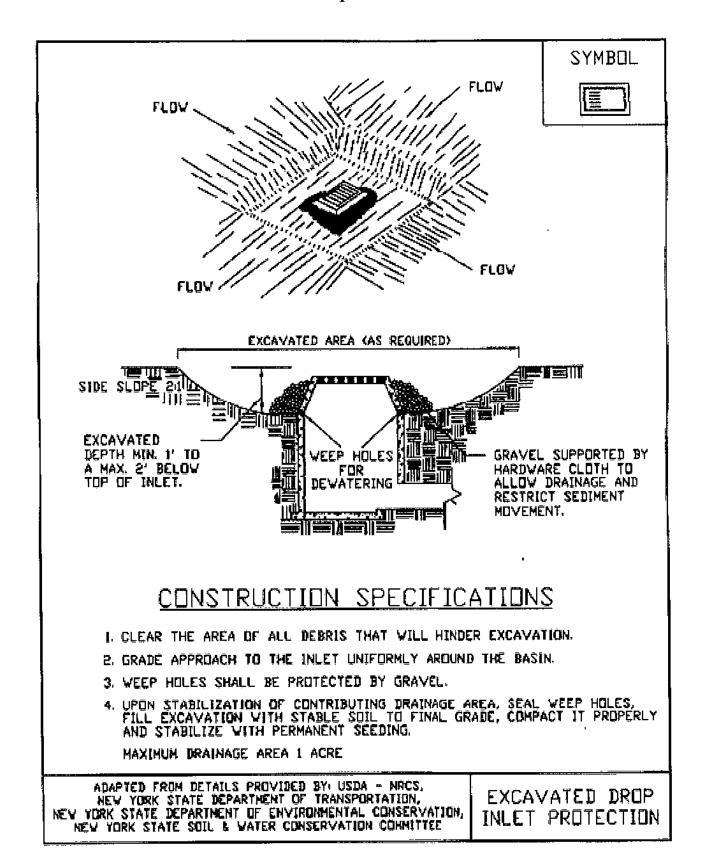

- The compost infill shall be well decomposed (matured at least 3 months), weed-free, organic matter. It shall be aerobically composted, possess no objectionable odors, and contain less than 1%, by dry weight, of manmade foreign matter. The physical parameters of the compost shall meet the standards listed in Table 5.2 -Compost Standards Table. Note: All biosolids compost produced in New York State (or approved for importation) must meet NYS DEC's 6 NYCRR Part 360 (Solid Waste Management Facilities) requirements. The Part 360 requirements are equal to or more stringent than 40 CFR Part 503 which ensure safe standards for pathogen reduction and heavy metals content. When using compost filter socks adjacent to surface water, the compost should have a low nutrient value.
- 6. The compost filter sock fabric material shall meet the

Figure 5.28 Compost Filter Sock Sediment Trap: ST-III

Plan View

Staking Detail



* Figures adapted from Filtrexx

Specifications:

- 1. Sock infill and filter media material shall meet the standards of Table 5.1 on page 5.8. Compost shall meet the compost filter sock standard of Table 5.2 on page 5.8.
- 2. Compost sock sediment traps shall not exceed three socks in height and shall be stacked in pyramidal form as shown above. Minimum trap height is one 24 inch diameter sock. Additional storage may be provided by means of an excavated sump 12 inches deep extending 1 to 3 feet upslope of the socks along the lower side of the trap.
- 3. Compost sock sediment traps shall provide 3,600 cubic feet storage capacity with 12 inches of freeboard for each tributary drainage acreage. (See manufacturer for anticipated settlement.)
- 4. The maximum tributary drainage area is 5.0 acres. Since compost socks are "flow-through," no spillway is required.
- 5. Compost sock sediment traps shall be inspected weekly and after each runoff event. Sediment shall be removed when it reaches 1/3 the height of the socks.
- 6. Photodegradable and biodegradable socks shall not be used for more than 1 year.

Figure 5.31 Excavated Drop Inlet Protection

